Enantioselective Michael Addition of Nitrophosphonates to Activated Olefins for Synthesis of Quaternary α-Aminophosphonates

Kalisankar Bera, Irishi N. N. Namboothiri*
Department of Chemistry, Indian Institute of Technology, Bombay, Mumbai 400076
Email: irishi@iitb.ac.in

Aminophosphonic acid mimics the tetrahedral transition states of enzyme-mediated peptide bond hydrolysis. Further, the antibacterial, antifungal and anti-HIV properties of α-aminophosphonic acids make them important class of medicinal and pharmaceutical compounds. Their use as organocatalysts and as well as their presence in biologically active natural product K-26 make them attractive synthetic targets.\(^1\) Although various stoichiometric and catalytic methods provide α-aminophosphonic acids with high enantioselectivity, generation of quaternary α-carbon centers via catalytic asymmetric synthesis of α-aminophosphonic acids remains scarcely explored.\(^2\)

Since nitrophosphonates are immediate precursors to aminophosphonic acids, our group pursued synthesis of optically active γ-nitrophosphonates and β-nitrophosphonates from nitroalkenes in good yield and enantioselectivity.\(^3\) As a part of our ongoing interest in nitrophosphonate chemistry, we have developed an efficient method for the synthesis of optically active quaternary α-nitrophosphonates by asymmetric Michael addition of dialkyl α-nitrophosphonates to enones\(^4\) and vinyl sulfones. The scope of these asymmetric reactions and transformation of these optically active quaternary α-nitrophosphonates will be discussed.

References