# Role of Lanthanide-Ligand bonding in the magnetization relaxation of mononuclear single-ion magnets: A case study on Pyrazole and Carbene ligated Ln<sup>III</sup>(Ln=Tb, Dy, Ho, Er) complexes

# TULIKA GUPTA, GUNASEKARAN VELMURUGAN, THAYALAN RAJESHKUMAR and GOPALAN RAJARAMAN\*

Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India e-mail: rajaraman@chem.iitb.ac.in

MS received 20 April 2016; revised 24 June 2016; accepted 6 July 2016

Abstract. Ab initio CASSCF+RASSI-SO+SINGLE\_ANISO and DFT based NBO and QTAIM investigations were carried out on a series of trigonal prismatic  $M(Bc^{Me})_3$  (M = Tb(1), Dy(2), Ho(3), Er(4),  $[Bc^{Me}]^-$  = dihydrobis(methylimidazolyl)borate) and  $M(Bp^{Me})_3$  (M = Tb(1a), Dy(2a), Ho(3a), Er(4a)  $[Bp^{Me}]^-$  = dihydrobis(methypyrazolyl)borate) complexes to ascertain the anisotropic variations of these two ligand field environments and the influence of Lanthanide-ligand bonding on the magnetic anisotropy. Among all the complexes studied, only 1 and 2 show large Ucal (computed energy barrier for magnetization reorientation) values of 256.4 and 268.5 cm<sup>-1</sup>, respectively and this is in accordance with experiment. Experimentally only frequency dependent  $\chi$ " tails are observed for complex 1a and our calculation predicts a large U<sub>cal</sub> of 229.4 cm<sup>-1</sup> for this molecule. Besides these, none of the complexes (3, 4, 2a, 3a and 4a) computed to possess large energy barrier and this is affirmed by the experiments. These observed differences in the magnetic properties are correlated to the Ln-Ligand bonding. Our calculations transpire comparatively improved Single-Ion Magnet (SIM) behaviour for carbene analogues due to the more axially compressed trigonal prismatic ligand environment. Furthermore, our detailed Mulliken charge, spin density, NBO and Wiberg bond analysis implied stronger Ln<sup>...</sup>H–BH agostic interaction for pyrazole analogues. Further, QTAIM analysis reveals the physical nature of coordination, covalent, and fine details of the agostic interactions in all the eight complexes studied. Quite interestingly, for the first time, using the Laplacian density, we are able to quantify the prolate and oblate nature of the electron clouds in lanthanides and this is expected to have a far reaching outcome beyond the examples studied.

**Keywords.** Lanthanides; magnetic anisotropy; ligand field environment; QTAIM and wiberg bond index analysis; single ion magnets.

## 1. Introduction

Since last two decades, lanthanide  $\{Ln^{III}\}^{1-13}$  containing complexes have become ubiquitous in the field of single molecule magnets (SMMs) having potential application in magnetic data storage.<sup>14–17</sup> This is essentially due to their inherently large single-ion anisotropy arising from their deeply buried 4f orbitals, large unquenched orbital angular momentum and large number of unpaired electrons. Ln<sup>III</sup> SMMs are preferred over their corresponding transition metal analogues as former result in larger effective energy barrier<sup>3,4</sup> for magnetization reorientation (U<sub>eff</sub>) upon Arrhenius fitting of the temperature dependence of relaxation time. Due to the large single-ion anisotropy of 4f metal

\*For correspondence

ions, even systems containing only one spin carrier {Ln<sup>III</sup>} within a molecule are exhibiting magnetization blockade and these are termed as Single Ion Magnets (SIMs).<sup>5,18-34</sup> Importance of magnetic anisotropy in the area of SMMs and ease of fine tuning it in mononuclear complexes has made the role of SIMs indispensable. Despite the tremendous progress in the area of SMMs and SIMs, they function only at very low temperatures (below liquid helium temperatures). Hence, in the quest of improved SIM characteristics, fine tuning of magnetic anisotropy and search/design of SIMs which are functional at room temperature<sup>35,36</sup> is imperative.

Lack of uniaxiality/presence of perturbations, *i.e.*, transverse magnetic field led to mixing of opposite angular momentum projection, and this subsequently results in enhanced Quantum Tunneling of Magnetization (QTM) as well as poor SMM characteristics. Crystal field<sup>23,24,27,37-44</sup> of the surrounding ligands essentially

Celebrating 100 years of Lewis Chemical Bond

dictate the magnetic properties in SIMs entailing the need to fine tune ligand field strength towards novel targeted design of SIMs. Alongside, coordination number<sup>1,45-48</sup> around the metal ion, coordination geometry/environment,<sup>49</sup> nature of the coordinated ligand and local point group symmetry need to be targeted simultaneously in order to achieve large U<sub>eff</sub> values. The control of magnetic properties via structural, electronic feature as well as ligand field surroundings complicates the spin dynamics in SIMs and necessitates profound understanding of these issues. Recently,<sup>50</sup> crucial role of 4f electron density distributions of Ln<sup>III</sup> ions have been proposed in an electrostatic manner to synthesize complexes towards stabilization of higher angular momentum energy levels. This explicitly suggests use of axial ligand field to stabilize largest angular momentum projections for oblate ions {Tb<sup>III</sup>, Dy<sup>III</sup> and Ho<sup>III</sup>} and equatorial ligand field is preferred in prolate ions {Er<sup>III</sup> and Yb<sup>III</sup>}. Hence, 4f electron density, corresponding crystal field parameters, magnitude of angular momentum also need to be modulated simultaneously in order to gain deeper insights into the magnetic anisotropic properties in Ln<sup>III</sup> based SIMs.<sup>50</sup>

Extensive experimental studies (Inelastic Neutron Scattering, HF-EPR, Angular Overlap Model)<sup>39,51-54</sup> have been utilized to probe magnetic anisotropy, but sufficient knowledge about the directions of local anisotropy axes could not be obtained. Fragment quantum chemistry calculations can be a good alternative in this regard as it accounts for spin-orbit coupling non-perturbatively. It enables determination of orientation of local anisotropy axis of the metal ion through estimation of g-tensors of the ground multiplet of the Ln<sup>III</sup> ions. CASSCF+RASSI-SO+SINGLE\_ANISO methodology has proved its aptness in such kind of studies and verified experimentally observed magnetic data nicely.<sup>23,41,43,48,49,55-78</sup>

Recently,<sup>79</sup> Long et al., reported isostructural series of trigonal prismatic  $M(Bc^{Me})_3$  (M = Tb(1), Dy(2), Ho(3), Er(4),  $[Bc^{Me}]^- = dihydrobis(methylimidazolyl)borate)$ and  $M(Bp^{Me})_3(M = Tb(1a), Dy(2a), Ho(3a), Er(4a))$  $[Bp^{Me}]^-$  = dihydrobis(methypyrazolyl)borate) complexes. Concrete experimental magnetic techniques showed slower relaxation of magnetization for N-heterocyclic carbenes  $\{M(Bc^{Me})_3\}$ -based lanthanides as compared to their isomeric pyrazole {M(Bp<sup>Me</sup>)<sub>3</sub>}ligands-based lanthanide analogues, suggesting better SIM behavior for the former. However, only for complexes  $Tb(Bc^{Me})_3$ (1) and  $Dy(Bc^{Me})_3(2)$ , frequency as well as temperature dependence of  $\chi$ " component of magnetic susceptibility was detected. Complexes 1 and 2 show relaxation of magnetization with  $U_{eff}$  values of 44.8 cm<sup>-1</sup> (Yttrium diluted sample showed 45.2 cm<sup>-1</sup>) and 32.8 cm<sup>-1</sup>

(Yttrium diluted sample showed 33.6 cm<sup>-1</sup>), respectively, under an applied dc magnetic field of 1500 Oe (field induced SIM, f-SIM behaviour).<sup>79</sup> On the other hand, only high frequency  $\chi$ " tails are experimentally observed for complexes 1a and 2a at an applied dc magnetic field of 1250 Oe with small  $U_{eff}$  of 21 cm<sup>-1</sup> for 1a.<sup>79</sup> Such change in magnetic behavior upon changing the number of 4f electrons has spurred our interest towards explicit analysis of these complexes and the nature of Ln-Ligand bonding. Therefore, here we have performed vigorous post-Hartree-Fock ab initio and DFT calculations on these eight complexes with an aim to answer the following intriguing questions: i) What are the origins of different energy barrier for magnetization reorientations in carbene- and pyrazole ligated complexes? ii) What is the mechanism of relaxation in these sets of complexes? iii) How structure and bonding features influence the magnetization blockade (Table 1)?

## 2. Computational

MOLCAS 8.0<sup>80-86</sup> suite has been employed to perform post-Hartree-Fock ab initio calculations. Spinfree wave functions were generated using complete active space self-consistent field (CASSCF) method. These multi-configurational wave functions have been used as input states to account for spin-orbit coupling via Restricted Active Space Spin State Interaction-Spin Orbit (RASSI-SO) methodology.<sup>86,87</sup> The resultant energies of the multiplets were used for the calculation of the anisotropic magnetic properties and g-tensors of the lowest state using a specially designed routine SINGLE\_ANISO.88 We have employed [ANO-RCC...7s6p4d2f1g.] basis set for  $Ln^{III}$  { $Ln^{III}$  = Tb, Dy, Ho, Er}, [ANO-RCC...3s2p.] basis set for N,O,C and B, and [ANO-RCC...2s.] basis set for H throughout our calculations. These ANO-RCC basis sets were adopted from ANO-RCC basis library included in MOLCAS 8.0 suite. The active space of (8,7) is used for Tb(Bc<sup>Me</sup>)<sub>3</sub> (1) and  $Tb(Bp^{Me})_3$  (1a) complexes. In the Configurational Interaction (CI) procedure, 7 septets, 140 quintets and 195 triplets are considered. The singlet states were not included due to computational limitations. In the RASSI module, 7 septets, 105 quintets and 112 triplets are mixed by spin-orbit coupling within the energy window of about 40,000 cm<sup>-1</sup>. The active space (9,7) is adopted for  $Dy(Bc^{Me})_3$  (2) and  $Dy(Bp^{Me})_3$  (2a) complexes. Here, in the CI procedure, 21 sextets were considered and this was only mixed by spin-orbit coupling as it has been found to be robust for computing the gtensors for Dy<sup>III</sup> ions. The active space (10,7) is used for  $Ho(Bc^{Me})_3$  (3) and  $Ho(Bp^{Me})_3$  (3a) complexes. In

**Table 1.** Calculated energy spectrum, g-tensors, relative energies and angles ( $\theta$ ) of the principal anisotropy axes of first excited states with respect to the ground state for ground and first excited Kramers (for 2, 2a, 4, 4a) and pseudo doublets (for 1, 1a, 3 and 3a) in 1–4 and 1a–4a.

| Ground multiplet                  | 1                 | 2          | 3              | 4     | 1a                | 2a    | 3a              | 4a   |
|-----------------------------------|-------------------|------------|----------------|-------|-------------------|-------|-----------------|------|
| g <sub>x</sub>                    | 0                 | 0.07       | 9.64           | 0.58  | 0                 | 0.06  | 0               | 9.53 |
| g <sub>v</sub>                    | 0                 | 0.09       | 9.33           | 1.73  | 0                 | 0.08  | 0               | 9.61 |
| gz                                | 17.93             | 19.91      | 1.08           | 3.66  | 17.92             | 19.91 | 16.92           | 0.81 |
| Energy $(cm^{-1})$                | 0.0 and 0.02      | 0.0        | 0.0 and 0.04   | 0.0   | 0.0 and 0.05      | 0.0   | 0.0 and 0.07    | 0.0  |
| 1 <sup>st</sup> excited multiplet | 1                 | 2          | 3              | 4     | 1a                | 2a    | 3a              | 4a   |
| g <sub>x</sub>                    | 0                 | 0.01       | 0.08           | 0.51  | 0                 | 0.24  | 0               | 0.35 |
| g <sub>v</sub>                    | 0                 | 0.18       | 0.24           | 0.70  | 0                 | 0.38  | 0               | 0.68 |
| gz                                | 14.65             | 17.31      | 3.17           | 3.77  | 14.66             | 17.26 | 14.37           | 2.14 |
| Energy $(cm^{-1})$                | 256.36 and 256.39 | 7.27       | 9.01 and 12.05 | 23.29 | 229.39 and 229.44 | 23.19 | 13.08 and 25.43 | 5.63 |
| angle(°)                          | 0.01              | 2.73       | 0.01           | 0.71  | 0.01              | 0.35  | 0.34            | 8.28 |
| $U_{cal}(cm^{-1})$                | 256.36            | 268.50*    | 9.01           | 23.29 | 229.39            | 23.19 | 13.08           | 5.63 |
| $U_{\rm eff}$ (cm <sup>-1</sup> ) | 44.8(45.2)        | 32.8(33.6) | -              | -     | 21                | -     | -               | -    |

\*Barrier with respect to the fourth excited KD; Values within bracket in U<sub>eff</sub> row represent experimentally estimated energy barrier for Yttrium diluted samples.

the configurational Interaction (CI) procedure, 35 quintets, 210 triplets and 196 singlets are considered. In the RASSI module, 35 quintets, 118 triplets and 76 singlets and 30 quintets, 107 triplets and 38 singlets for 3 and 7 respectively are mixed by spin-orbit coupling within the energy window of about  $40,000 \text{ cm}^{-1}$ . The active space (11,7) is adopted for  $Er(Bc^{Me})_3$  (4) and  $Er(Bp^{Me})_3$ (4a) complexes. In the configurational Interaction (CI) procedure, 35 quartets and 112 doublets are considered. In the RASSI module, 35 quartets and 112 doublets for both the Er<sup>III</sup> complexes are mixed by spin-orbit coupling within the energy window of about  $40,000 \text{ cm}^{-1}$ . Mulliken charges and the spin densities have been computed using DFT calculations employing Gaussian 0989 suite. Here we have employed the B3LYP functional, along with the CSDZ<sup>90</sup> basis set for the Ln<sup>III</sup> ion and the Ahlrichs triple- $\zeta^{91}$  basis set (TZV) has been employed for the rest of the atoms.

The wave function for use in quantum theory of atoms in molecules (QTAIM) analysis were generated from single point calculation using hybrid B3LYP functional<sup>92-94</sup> with a combination of CSDZ<sup>90</sup> ECP on Tb, Dy, Ho, Er and TZV Ahlrichs triple- $\zeta$  basis set on other atoms as implemented in the Gaussian 09 suite<sup>89</sup> of programs. Further, the quantum theory of atoms in molecule (QTAIM) was applied to depict the topological properties of the chosen complexes. To better understand the nature of the interaction of the Ln atom with others, we have used the Baders Atoms in Molecules theory.<sup>95</sup> In this theory, Bader and co-workers characterize bonding and non-bonding interactions of atoms in terms of topological properties such as electron density  $\rho(r)$ , Laplacian of the electron density L(r), potential energy density V(r), kinetic energy density H(r) and a potential energy to the Lagrangian kinetic energy ratio (|V(r)/G(r)|). For instance, the presence of a (3, -1) critical point in QTAIM topography represents a chemical bond between two atoms and are called as the bond critical points (BCPs) where the shared electron density reaches a minimum, whereas a critical point with (3, +1) and (3, +3) signatures identify a ring structure (RCP) and cage critical point (CCP) in the molecular system. The  $\rho(r)$  values at the BCPs are related to the strength of the bonds.<sup>96</sup> In this study, QTAIM calculations are performed at B3LYP/CSDZ level using AIM2000 package.<sup>97</sup>

#### 3. Results and Discussion

We have chosen eight isostructural and isomeric complexes 1–4 and 1a–4a for our study. All the complexes comprise six coordinate Tb<sup>III</sup>, Dy<sup>III</sup>, Ho<sup>III</sup> and Er<sup>III</sup> in tricapped trigonal prismatic coordination environment surrounded by three pyrazolate ligands in complexes 1a–4a and three N-heterocyclic carbene ligands in complexes 1–4. Among the lanthanide family, Dy<sup>III</sup> ion has indisputably led to the largest number of pure SIMs. This is ascribable to the reduced QTM of these systems compared to other lanthanide ions owing to its large magnetic moment and odd electron configuration. Here, we begin our discussion with single-ion magnetic behaviour in all the complexes followed by cross comparison between lanthanide complexes.

#### 3.1 Single-ion anisotropy studies on complexes 1 and 1a

The energy spectrum for thirteen energy states (six pseudo-doublets and one singlet) of the ground  ${}^{7}F_{6}$ 

multiplet for the Tb<sup>III</sup> ion and g-tensors of ground state in compounds 1 and 1a are shown in the Supplementary Information (SI), with the excited states lying at 2400 cm<sup>-1</sup>. As expected for the non-Kramers ion, all the pseudo-doublets in complexes 1 and 1a are pure Ising in nature. Ground pseudo-doublet for 1 and 1a possesses g<sub>z</sub> value of 17.93 and 17.92 (see ground state g<sub>z</sub> orientation in Figures 1a and 1b), respectively, approaching that expected for pure  $m_J = \pm 6$  state of  $g_z \sim 18$ . See Tables S3 and S4 in Supplementary Information. Tunnel splitting  $(\Delta_{tun})$  within the ground multiplets is considerable for both the complexes (0.02)and 0.05 cm<sup>-1</sup> for **1** and **1a**, respectively; larger than the cut-off value of  $10^{-5}$  cm<sup>-1</sup> (Table 1)) suggesting absence of magnetic bistability. This precludes zerofield SIM behaviour for both the complexes. However, application of dc field enhances the ground-first excited level gap posing probable SIM characteristics on both the compounds by quenching QTM probability. Our calculations affirm tunnel splitting of 0.03 and 0.04 cm<sup>-1</sup>, respectively, for **1** and **1a** in their corresponding first excited pseudo-doublets. This outlines calculated energy barrier (U<sub>cal</sub>) to be 256.4 and 229.4 cm<sup>-1</sup> for **1** and **1a** (Table 1), respectively to promote relaxation *via* this level. This represents both **1** and **1a** to be SIM. In complex **1**, our calculations overestimate the experimentally observed U<sub>eff</sub> value of 44.8 (45.2) cm<sup>-1</sup> and this can be ascribed to the lack of consideration of intermolecular interaction and zero-field QTM in our calculations.

However, though complex **1a** shows large  $U_{cal}$  of 229.4 cm<sup>-1</sup>, frequency tails ( $\chi$ ") at field of 1250 Oe



**Figure 1.** Ab initio computed orientation of  $g_z$ -tensor for ground state KD in complexes. (a) **1**, (b) **1a**, (c) **2**, (d) **2a** (e) **3**, (f) **3a**, (g) **4** and (h) **4a**, as shown with their crystal structures {M(Bc<sup>Me</sup>)<sub>3</sub> (M = Tb(1), Dy(2), Ho(3), Er(4), [Bc<sup>Me</sup>]<sup>-</sup> = dihydrobis(methylimidazolyl)borate) and M(Bp<sup>Me</sup>)<sub>3</sub>(M = Tb(1a), Dy(2a), Ho(3a), Er(4a), [Bp<sup>Me</sup>]<sup>-</sup> = dihydrobis(methypyrazolyl)borate)}. Color scheme: Tb: red, Dy: dark green, Ho: sky blue, Er: light green, O: red, N: blue, C: grey. H atoms have been removed for clarity.

was experimentally observed leading to the estimation of  $U_{eff}$  as 21 cm<sup>-1</sup>. Our wave function analysis reveals ground state as a admixture of 70%  $|\pm 6>$  and small contributions from other m<sub>J</sub> levels for 1 and 1a. Ground state axial crystal field parameters are much larger  $(B_2^0 = 5.47 \text{ and } 4.75 \text{ for } 1 \text{ and } 1a \text{ respectively})$  than the corresponding non-axial terms  $(B_2^{-1,+1})$  (see Table S9 in SI). This accounts for the pure Ising nature, resulting from the non-Kramer Tb<sup>III</sup> ion in complexes 1 and 1a. For both the compounds,  $g_z$  orientation intersects through the negatively charged three ligands in order to encounter least electrostatic repulsion (Figures 1a and 1b). Our computed data is further substantiated by nice agreement between calculated and experimental  $\chi_m T$  vs T plots (Figures 3a and 3b).

#### 3.2 Single-ion anisotropy studies on complexes 2 and 2a

The energy spectrum for eight Kramers doublets of the ground <sup>6</sup>H<sub>15/2</sub> multiplet for the Dy<sup>III</sup> ion and g-tensors of ground state in compound 2 and 2a are shown in the Supplementary Information, with the excited states lying at 3000 cm<sup>-1</sup>. In 2 and 2a, the ground state (GS) Kramers doublet (KD) shows almost Ising type anisotropy with  $g_{xy} < 0.5$  (Tables S1 and S2 in Supplementary Information (Table 1)) *i.e.*,  $g_z = 19.91$  *i.e.*, (see ground state  $g_z$  orientation in Figures 1c and 1d) close to that expected for a pure  $m_J = \pm 15/2$  state of  $g_z \sim 20$ . It is worthy to note that, all the computed g-tensors correspond to an effective spin S = 1/2of the KDs. For 2, main anisotropic g-tensor  $(g_z)$  lies at lower angles ( $< 3^{\circ}$ ) upto fourth excited KD. This opens up probabilities of magnetic relaxation via higher excited multiplets resulting in larger energy barrier for magnetization reorientation. It is notable that, transverse components of the energy multiplets are negligible upto third excited KD;  $g_{xy} < 0.5$  and it becomes very prominent in fourth excited KD ( $g_x = 5.1$ ;  $g_y =$ 5.3,  $g_z = 8.0$ ). We have further analysed the relaxation mechanism which can occur *via* three pathways: a) QTM between the ground KDs owing to substantial transverse anisotropy of ground KDs; b) Orbach/Raman process to induce relaxation via excited KDs which is essentially controlled by non-collinearity of g<sub>z</sub> axis; c) thermally assisted-QTM (TA-QTM) within excited KDs resulting due to non-Ising nature of excited KDs. In qualitative *ab initio* computed relaxation mechanism, the KDs are arranged in accordance with their magnetic moments. The numbers at each arrows (solid, dashed and dotted) connecting any two energy states correlate to the matrix elements of the transition magnetic moments between the respective energy levels. As the ground state is almost pure Ising type due to negligible transverse anisotropy, QTM pathway is least effective via this state as reflected in computed magnetic moment of 0.03  $\mu_{\rm B}$ . We would like to note here that matrix element connecting same multiplets of opposite directional magnetization having a value  $> 10^{-1} \mu_B$  along with substantial transverse component ( $g_{xy} \sim 4$ ) promotes relaxation via that particular state.14h Similar trend of less efficient TA-QTM within excited states was evident (~0.05  $\mu_{\rm B}$ ) upto third excited KD due to negligible transverse anisotropy. Although pronounced magnetic moment corresponding to Orbach/Raman relaxation upto third excited KD (~3  $\mu_{\rm B}$ ) was computed, lower angle of the  $g_z$  alignment of excited KDs (upto third) with respect to ground KD and small transverse components deters relaxation via these states. Fourth excited KD possesses huge transverse anisotropy and this was corroborated by substantial TA-QTM pathway via this state (1.76  $\mu_{\rm B}$ ) and a significant Orbach relaxation pathway (3.09  $\mu_{\rm B}$ ). This essentially outlines the calculated energy barrier ( $U_{cal}$ ) as 268.5 cm<sup>-1</sup> (Figure 2a) with respect to the experimental  $U_{eff}$  value 32.8 (33.6) cm<sup>-1</sup> for complex 2 (Table 1). This large discrepancy between U<sub>cal</sub> and U<sub>eff</sub> values have been observed earlier and are attributed to, (i) QTM effects which are not incorporated in the  $U_{cal}$  estimates, (ii) intermolecular/hyperfine interactions, and (iii) other relaxation mechanism such as Raman process being operational. Ising nature of the ground state is also corroborated by negligible QTM  $(0.02 \ \mu_{\rm B})$  in complex **2a** (Figure 2b). Now, complex **2a** reveals huge transverse anisotropy ( $g_{xy} > 0.5$ ;  $g_{xy}$ < 4) in the first excited KD which is also reflected in pronounced TA-QTM (0.10  $\mu_{\rm B}$ ). This outlines U<sub>cal</sub> as  $23.2 \text{ cm}^{-1}$  which is in line with the experimentally observed high frequency tails ( $\chi$ ") at field of 1250 Oe with no observed U<sub>eff</sub> values.

Our wavefunction analysis is affirmative of  $|\pm$  $15/2 > 99\% \mid \pm 15/2 >$ , as ground state KD for both the complexes. However, fourth excited KD which involves in determining energy barrier is admixture of 56%  $\mid \pm \mid$ 7/2> + 18%  $\pm$  5/2>states in complex 2. In complex 2a, first excited KD is pure  $|\pm 13/2>$ : 94%  $|\pm$ 13/2>state. Ground state axial crystal field parameters are much larger ( $B_2^0 = 3.28$  and 2.97 for **2** and 2a, respectively) than corresponding non-axial terms  $(B_2^{-1,+1})$  (Table S9 in SI). This suggests suppressed QTM within ground state for both the complexes reiterating our earlier statements. For both the compounds,  $g_z$  orientation intersects through the negatively charged three ligands in order to encounter least electrostatic repulsion (see Figures 1c and 1d). Our computed data is further substantiated by nice agreement between calculated and experimental  $\chi_m T$  vs T plots (Figures 3c and 3d).



**Figure 2.** *Ab initio* calculated magnetization blocking barrier for complexes, (a) **2** and (b) **2a**. The thick black line represent the Kramers doublets (KDs), as a function of magnetic moment. The blue dotted lines indicate the possible path for the Orbach process. The solid green arrows imply the most probable relaxation pathways for magnetization reversal. The dashed-dotted red lines correspond to the presence of QTM/TA-QTM between the connecting pairs. The numbers at each arrow are the mean absolute value for the corresponding matrix element of transition magnetic moment.



Figure 3. Experimental and *ab initio* calculated molar magnetic susceptibility plots for complexes; (a) 1, (b) 1a, (c) 2, (d) 2a, (e) 3, (f) 3a, (g) 4 and (h) 4a. Here, blue filled circles represent data extracted from experimental plots while half-filled-half-void green triangles correspond to *ab initio* calculated molar magnetic susceptibilities. It is noteworthy, that intermolecular interaction zJ is assumed to be zero in these calculations.

#### 3.3 Single-ion anisotropy studies on complexes 3 and 3a

The energy spectrum for seventeen energy states (seven pseudo-doublets and three singlets) of the ground  ${}^{5}I_{8}$ multiplet for the Ho<sup>III</sup> ion and g-tensors of ground state in compound 3 and 3a are shown in the Supplementary Information, with the excited states lying at  $\sim$ 5200 cm<sup>-1</sup>. As expected for the non-Kramers ion, all the pseudo-doublets in complexes 3 and 3a are pure Ising in nature. Ground pseudo-doublet for 3 and **3a** possesses  $g_z$  of 17.10 and 16.92, respectively, (see ground state g<sub>z</sub> orientation in Figures 1e and 1f), resembles that expected for pure  $m_I = \pm 7$  state of  $g_z \sim 17.5$ , (Tables S5 and S6 in SI) but far from the pure  $m_J =$  $\pm$  8 state of  $g_z$  ~20. This is also corroborated by our computed wave function analysis which shows ground state composed of 70%  $\mid \pm$  7>state with a small contributions from other m<sub>I</sub> levels for both the complexes. Tunnel splitting  $(\Delta_{tun})$  within the ground multiplets is considerably large for both the complexes (0.04 and  $0.07 \text{ cm}^{-1}$  for 3 and 3a, respectively; larger than the cutoff value of  $10^{-5}$  cm<sup>-1</sup> (Table 1)) suggesting absence of magnetic bistability. This precludes zero-field SIM behaviour for both the complexes. However, application of dc field enhances the ground-first excited level gap posing probable SIM characteristics on both the compounds by suppressing the extent of QTM effects.

Our calculations yield tunnel splitting of 3.04 and 12.35 cm<sup>-1</sup>, respectively, for **3** and **3a** in their corresponding first excited pseudo-doublets. This large tunnelling gap indicates relaxation *via* this state with  $U_{cal}$  value of 9.01 and 13.08 cm<sup>-1</sup> for **3** and **3a** (Table 1), respectively. Such small energy barrier value supports

experimental observation of the absence of  $\chi$ " peaks even in applied field conditions. This rules out the possibility of magnetic bistability as well as SIM behaviour. Ground state axial crystal field parameters are much larger ( $B_2^0 = 1.00$  and 0.93 for **3** and **3a**, respectively) than corresponding non-axial terms ( $B_2^{-1,+1}$ ) (Table S9 in SI). This accounts for the pure Ising nature resulting from the non-Kramer Ho<sup>III</sup>ion in complexes **3** and **3a**. For both the compounds,  $g_z$  orientation intersects through the negatively charged three ligands in order to encounter least electrostatic repulsion (Figures 1e and 1f). Our computed data is further substantiated by nice agreement between calculated and experimental  $\chi_m T$  vs T plots (Figures 3e and 3f).

#### 3.4 Single-ion anisotropy studies on complexes 4 and 4a

The energy spectrum for eight Kramers doublets of the ground <sup>4</sup>I<sub>15/2</sub> multiplet for the Er<sup>III</sup> ion and g-tensors of ground state in compound 4 and 4a are shown in the Supplementary Information, with the excited states lying at 6600 cm<sup>-1</sup>. In **4** and **4a**, the ground state (GS) Kramers doublet (KD) contains substantial transverse anisotropy; *i.e.*,  $g_x = 9.64$ ,  $g_y = 9.33$ ,  $g_z = 1.08$  and  $g_x = 9.53, g_y = 9.16, g_z = 0.81$  for 4 and 4a, respectively (see ground state  $g_z$  orientation in Figures 1g and 1h) (See Tables S7 and S8 in SI) (Table 1). This is also substantiated by stabilization of  $m_J = |\pm 1/2>$ : 57%  $|\pm 1/2>$  and  $m_J = |\pm$  $1/2>: 59\% \mid \pm 1/2>$  for 4 and 4a, respectively. Analysis on magnetic relaxation mechanism exhibits pronounced QTM of 3.16 and 3.11  $\mu_{\rm B}$  in 4 and 4a, respectively (see Figures 4a and 4b). This behaviour



**Figure 4.** *Ab initio* calculated magnetization blocking barrier for complexes; (a) **4** and (b) **4a**. The thick black line represents the Kramers doublets (KDs), as a function of magnetic moment. The blue dotted lines indicate the possible path for the Orbach process. The solid green arrows imply the most probable relaxation pathways for magnetization reversal. The dashed-dotted red lines correspond to the presence of QTM/TA-QTM between the connecting pairs. The numbers at each arrow are the mean absolute value for the corresponding matrix element of transition magnetic moment.

facilitates efficient QTM within the ground state precluding zero-field SIM behaviour in both of these complexes. However, on application of magnetic field, analysis of first excited KD becomes imperative. In complexes 4 and 4a, even the first excited state is also associated with significant transverse components with very small value of  $g_z$  (3.17 and 2.14 for 4 and 4a, respectively). This indicates relaxation via this level with  $U_{cal}$  value of 23.3 and 5.6 cm<sup>-1</sup> for 4 and 4a (Table 1), respectively. Such small value of barrier in complex 4a supports experimental absence of SIM behaviour nicely. Though for complex 4, the first excited level energy is comparable to that of complex 2a, significant  $g_x/g_y$  component in conjunction with small  $g_z$  component completely destroys the SIM behaviour even in the presence of applied dc magnetic field. Ground state axial crystal field parameters are marginally larger  $(B_2^0 = 1.37 \text{ and } 1.26 \text{ for } 4 \text{ and}$ 4a, respectively) than corresponding non-axial terms  $(B_2^{-1,+1})$  and are of competing magnitude (see Table S9 in SI). This suggests probability of QTM within ground state for both the complexes reiterating our earlier statements. For both the compounds,  $g_z$  orientation intersects through the negatively charged three ligands in order to encounter least electrostatic repulsion (Figures 1g and 1h). Our computed data is further substantiated by nice agreement between calculated and experimental  $\chi_m T$  vs T plots (Figures 3g and 3h).

# 3.5 Comparative analysis of single-ion anisotropy behaviour of complexes **1–4** and **1a–4a**

Our calculations reproduce the experimental SIM behaviour for complexes 1 ( $U_{cal} = 256.36 \text{ cm}^{-1}$ ) and 2 ( $U_{cal} = 268.50 \text{ cm}^{-1}$ ). On the other hand, though computations predicted large energy barrier for magnetization reorientation for complex 1a (U<sub>cal</sub> = 229.39 cm<sup>-1</sup>), experimentally only high frequency tail ( $\chi$ ") was detected at 1250 Oe magnetic field with U<sub>eff</sub> of 21 cm<sup>-1</sup>. Calculated lower U<sub>cal</sub> value for complex **2a** ( $U_{cal} = 23.19 \text{ cm}^{-1}$ ) was in line with experimental high frequency tails ( $\chi$ ") at 1250 Oe. Rest of the four complexes containing Ho<sup>III</sup> (3 and 3a) and Er<sup>III</sup> (4 and 4a) ions lack SIM behaviour. Complexes with non-Kramers ion are found to be superior in producing larger barrier height for magnetization reversal. Axial alignment of the N-heterocyclic carbene as well as bis(pyrazolyl)borate ligand around Ln<sup>III</sup> ions is favourable for ions with oblate 4f electron density  $(Tb^{III}, Dy^{III} and Ho^{III})$  while unfavourable for  $Er^{III}$  ion with prolate electron density. Though DyIII and ErIII ions possess similar m<sub>J</sub> value of 15/2, they differ in the shape of 4f electron density. This is evident through the stabilisation of  $m_I = \pm 15/2$  and 1/2 ground state KD for complexes 2/2a and 4/4a, respectively. This can be ascribed to the unfavourable axial ligand position around ErIII resulting in removal of SIM characteristics. N-heterocyclic carbene compounds are axially compressed trigonal prismatic structure as compared to that constituted by bis(pyrazolyl)borate ligand. This leads to comparatively better SIM characteristics for the N-heterocyclic-carbene analogues as compared to their corresponding bis(pyrazolyl)borate ligand analogues for all the complexes. Between complexes 2 and 2a, observation of prominent transverse anisotropic components in later complex is affirmative of stronger crystal field mixing of the free-ion states in 2a. On the other hand, stronger crystal field mixing of the free-ion states and resultant poorly defined energy multiplets in complex 4a as compared to 4 has been manifested by distinctive deviation between ground and first excited anisotropy direction (0.7° vs 8.3° for 4 vs 4a). Besides, it is notable that, larger deviation of first excited anisotropic direction with respect to the ground state is suggestive of low-symmetry ligand field environment. Hence, Ucal value varies as complex  $1 \approx 2 > 1a > 2a$ , revealing better behaviour for carbene analogues. For complexes 1/1a,  $m_J = \pm 6$  has been stabilised as ground state in accordance with the expectation. However, for 3/3a,  $m_J = \pm 7$  has been stabilised as ground pseudo-doublet in contrary to the expected stabilisation of  $m_I = \pm 8$  pseudo-doublet. This clearly demonstrates the comparatively lower symmetry ligand environment for Ho<sup>III</sup>-based complexes as compared to their Tb<sup>III</sup> analogues. This was further corroborated by first excited tunnelling gap for 0.03 vs  $3.04 \text{ cm}^{-1}$  for **1** vs **3** and 0.04 vs 12.35 cm<sup>-1</sup> for **1a** vs **3a**. Even within the similar ion analogues, tunnel splitting of first excited pseudo-doublet in pyrazole-ligated complex 1a/3a is much larger than that in complex 1/3 (carbene ligated) reiterating our earlier statement of better SIM behaviour for carbene analogues. Hence, despite the lower energy magnitude of first excited pseudo-doublet for **3** (9.01  $\text{cm}^{-1}$ ) in comparison with **3a** (13.08 cm<sup>-1</sup>), tunnel splitting dictates the magnetic behaviour and larger  $\Delta_{tun}$  for **3a** indicates poor SIM characteristics for 3a. Thus, our calculations based on  $U_{cal}$  value predict the following trend:  $1 \approx 2 > 1a > 4$ >2a >3a >3 >4a. The magnetic analysis of all the eight complexes are summarized in Table 2.

# 3.6 Role of Ln-L Bonding in influencing Magnetic Anisotropy of complexes **1–4** and **1a–4a**

3.6a *Charge and Spin Density Analysis*: To understand the role of CF parameters and the 4f-ligand interactions, we have analysed the charges and the spin

| Complexes  | $U_{eff}$<br>(cm <sup>-1</sup> ) | U <sub>cal</sub><br>(cm <sup>-1</sup> ) | Experimental<br>relaxation<br>metrics | Calculated relaxation metrics                                                                                                                                                         |
|------------|----------------------------------|-----------------------------------------|---------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | 44.8(45.2)                       | 256.36                                  | _                                     | <i>Via</i> 1 <sup>st</sup> excited KD $\Delta_{tun} = 0.02$ and 0.03 cm <sup>-1</sup> for ground and first                                                                            |
| 2          | 32.8(33.6)                       | 268.50*                                 | QTM=3.1                               | excited pseudo-doublet, respectively<br>Via 4 <sup>th</sup> excited KD<br>QTM=0.03,0.03,0.03,0.05 and 1.76 $\mu_{\rm B}$ ,                                                            |
| 3          | _                                | 9.01                                    | _                                     | respectively for ground, $1^{st}$ , $2^{st}$ , $3^{st}$ , $4^{st}$ , $5^{st}$ KD<br>Via $1^{st}$ excited KD<br>$\Delta_{tun} = 0.04$ and $3.04$ cm <sup>-1</sup> for ground and first |
| 4          | -                                | 23.29                                   | -                                     | excited pseudo-doublet, respectively<br>Via 1 <sup>st</sup> excited KD<br>QTM=3.16 and 0.05 $\mu_{\rm B}$ , respectively, for                                                         |
| 1a         | 21                               | 229.39                                  | QTM=115.9                             | ground and 1 <sup>st</sup> excited KD<br>Via 1 <sup>st</sup> excited KD<br>$\Delta_{tun} = 0.05$ and 0.04 cm <sup>-1</sup> for ground and first                                       |
| 2a         | -                                | 23.19                                   | -                                     | excited pseudo-doublet, respectively<br>Via 1 <sup>st</sup> excited KD<br>QTM=0.02 and 0.10 $\mu_{\rm B}$ , respectively, for                                                         |
| <b>3</b> a | -                                | 13.08                                   | -                                     | ground and 1 <sup>st</sup> excited KD<br>Via 1 <sup>st</sup> excited KD<br>$\Delta_{tun} = 0.07$ and 12.35 cm <sup>-1</sup> for ground and                                            |
| 4a         | -                                | 5.63                                    | -                                     | first excited pseudo-doublet, respectively<br>Via 1 <sup>st</sup> excited KD<br>QTM=3.11 and 0.19 $\mu_{\rm B}$ , respectively, for<br>ground and 1 <sup>st</sup> excited KD          |

 Table 2.
 Comparative magnetic analysis on eight complexes studied.

densities obtained from DFT calculations. In all the complexes, metal ions possess positive spin density while the six-coordinated C (for complexes 1, 2, 3, 4) and N (for complexes 1a, 2a, 3a, 4a) atoms show small negative spin density. This clearly reveals mixture of spin delocalization and polarization with preponderant spin polarization on the coordinated ligand donor atoms (Figure 5). Mulliken charge analysis predicts strong crystal field around the carbene ligated complexes as compared to their pyrazole analogues. This can be attributed to the negative charges on the C atoms of carbene ligands while positive charges were computed on the ligated nitrogen atoms of the pyrazole ligands (see Table 3 and for corresponding atomic numbers see Figure S2 in Supplementary Information). In order to gain insights into the orientation of principal anisotropy axis  $(g_z)$ , we have also performed analysis based on simple electrostatic model.<sup>98</sup> The calculated orientations of the magnetic moments of the ground state for 2 and 2a (Figure S1 in SI) resemble the alignment expected from *ab initio* calculations (deviation between *ab initio* and electrostatic anisotropic axis is  $0.23^{\circ}$  and  $0.48^{\circ}$  for **2** and **2a**, respectively).

3.6b *NBO Analysis*: To gain clues into the nature of Ln-L bonding, NBO calculations were also carried out

on all the eight complexes to understand the Ln-H-B interactions. For all the complexes, we have focussed on the charge transfer interaction between B-H bond moiety and metal ion. On this note, we have computed charge transfer interaction stabilization energy from the donor  $\sigma_{B-H}$  bond to the acceptor p-d hybrid orbital of the Ln<sup>III</sup> ions. In all the complexes, NBO second order perturbation analysis reveals larger stabilization energy for the donor B-H bond to acceptor Ln<sup>III</sup> ions in the corresponding pyrazole ligated complexes as compared to their corresponding carbene analogues (see Figures S3–S18 in SI). This can be attributed to the larger bite angle, smaller Ln—H distance of the pyrazole analogues. The Wiberg bond indexes computed for the Dy<sup>III</sup>—H in 2 and 2a are 0.01 and 0.02, respectively. This suggests the presence of stronger agostic interaction in pyrazole analogues compared to the carbene analogues (see section 3.6c). A similar trend was evident for all the carbene and pyrazole analogues of the three other metal ions (Tb<sup>III</sup>, Ho<sup>III</sup> and Er<sup>III</sup>). The NBO analysis for 2 reiterates the nature of B-H bonding between the two sites where B-H is found to be strongly covalent possessing a significant  $\sigma$  character with 45.91 Similarly, for **2a** as well, 45.59 calculated for the B-H bond implying its  $\sigma$ -character. For all other six complexes, 45 corresponding B-H bonds.



**Figure 5.** DFT-computed spin density plots for complexes; (a) **1**, (b) **1a**, (c) **2**, (d) **2a**, (e) **3**, (f) **3a**, (g) **4** and (h) **4a**. The isodensity surface represented corresponds to a value of 0.0009  $e^{-1}$ /bohr<sup>3</sup>. The green and yellow regions correspond to positive and negative spin densities, respectively.

3.6c *QTAIM Analysis*: We have investigated the topological properties at the bond critical point (BCPs) for the chosen complexes. All the systems analyzed here clearly display BCPs indicating the bonded and the non-bonded interactions that exist in the complexes. In the molecular graph (Figure S1 in SI), the big circles correspond to attractors attributed to positions of atoms and critical points such as (3, -1) BCP (red), (3, +1) RCP (yellow) and (3, +3) CCP (green) indicated by small circles.

The topological properties at BCPs for Ln-C(N) and Ln<sup>...</sup>H–BH is collected in Tables 4 and 5 (complete topological properties are given in Tables S10 and S11 in Supporting Information) respectively. The lanthanide (Ln) atom forms six bonds with each C/N atom of the three ligand (*via* C or N). It is seen that in all the complexes, there are mainly two different bond paths have been observed between Ln and ligand. Among them, six interactions are Ln<sup>...</sup>C(N) type and remaining three are Ln<sup>...</sup>H–BH type agostic interactions (refer Figure S19 in SI). In addition to this several other interactions also present.

The electron density  $\rho(r)$  at the BCP between Ln and the C1/N1 atoms of **1–4** and **1a–4a** shows values of 0.0467, 0.0458, 0.0478, 0.0351 and 0.0458, 0.0477, 0.0454 and 0.0623 au, respectively. It is seen that  $\rho(r)$  is small (0.0363 au  $< \rho(r) < 0.0986$  au) and  $\nabla^2_{\rho(r)}$  is small positive (0.0277 au  $< \nabla^2_{\rho(r)} < 0.16642$  au), indicating

**Table 3.** DFT-computed Mulliken charges for complexes 1–4 and 1a–4a, where the atomic number of respective complexes have been taken from pictorial representation (Figure S2 in Supplementary Information) of the core structure containing metals with six-coordination number ligated donor atoms.

| Complex 1         | Mulliken charge | Complex 1a        | Mulliken charge | Complex 2                    | Mulliken charge | Complex 2a                   | Mulliken charge |
|-------------------|-----------------|-------------------|-----------------|------------------------------|-----------------|------------------------------|-----------------|
| Tb <sup>III</sup> | 0.84            | $Tb^{III}$        | 1.59            | $Dy^{III}$                   | 0.86            | $\mathrm{Dy}^{\mathrm{III}}$ | 1.62            |
| C1                | -0.19           | N1                | 0.07            | Cĺ                           | -0.19           | N1                           | 0.06            |
| C2                | -0.23           | N2                | 0.06            | C2                           | -0.24           | N2                           | 0.07            |
| C3                | -0.19           | N3                | 0.07            | C3                           | -0.19           | N3                           | 0.06            |
| C4                | -0.24           | N4                | 0.07            | C4                           | -0.24           | N4                           | 0.07            |
| C5                | -0.19           | N5                | 0.06            | C5                           | -0.19           | N5                           | 0.06            |
| C6                | -0.24           | N6                | 0.06            | C6                           | -0.24           | N6                           | 0.07            |
| Complex 3         | Mulliken charge | Complex 3a        | Mulliken charge | Complex 4                    | Mulliken charge | Complex 4a                   | Mulliken charge |
| Ho <sup>III</sup> | 0.55            | Ho <sup>III</sup> | 1.43            | Ċ1                           | -0.19           | N1                           | 0.05            |
| C1                | -0.20           | N1                | 0.10            | C2                           | -0.23           | N2                           | 0.08            |
| C2                | -0.14           | N2                | 0.08            | $\mathrm{Er}^{\mathrm{III}}$ | 0.80            | $\mathrm{Er}^{\mathrm{III}}$ | 1.55            |
| C3                | -0.20           | N3                | 0.10            | C4                           | -0.24           | N3                           | 0.05            |
| C4                | -0.14           | N4                | 0.09            | C5                           | -0.18           | N4                           | 0.08            |
| C5                | -0.20           | N5                | 0.10            | C6                           | -0.24           | N5                           | 0.05            |
|                   |                 |                   |                 |                              |                 |                              |                 |

**Table 4.** Topological parameters at BCPs in the Ln–C(N) bonds of the complexes 1–4 and 1a–4a.  $\rho(r)$  in units of eÅ<sup>-3</sup>.

|           | Ln–C1(N1)<br>bonds |                       | Ln-C2(N2)<br>bonds |                       | Ln–C3(N3)<br>bonds |                       | Ln-C4(N4)<br>bonds |                       | Ln–C5(N5)<br>bonds |                       | Ln–C6(N6)<br>bonds |                       |
|-----------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|--------------------|-----------------------|
| Complexes | $\rho(r)$          | $ abla_{ ho_{(r)}}^2$ | $\rho(r)$          | $ abla^2_{ ho_{(r)}}$ | $\rho(r)$          | $ abla_{ ho_{(r)}}^2$ |
| 1         | 0.0467             | 0.0277                | 0.0475             | 0.0279                | 0.0471             | 0.0280                | 0.0476             | 0.0288                | 0.0470             | 0.0281                | 0.0363             | 0.0297                |
| 2         | 0.0458             | 0.0259                | 0.0470             | 0.0265                | 0.0459             | 0.0263                | 0.0471             | 0.0266                | 0.0455             | 0.0277                | 0.0466             | 0.0278                |
| 3         | 0.0478             | 0.0296                | 0.0467             | 0.0291                | 0.0479             | 0.0310                | 0.0466             | 0.0293                | 0.0478             | 0.0299                | 0.0465             | 0.0289                |
| 4         | 0.0351             | 0.0730                | 0.0853             | 0.1030                | 0.0368             | 0.0750                | 0.0859             | 0.1099                | 0.0299             | 0.0527                | 0.0816             | 0.1001                |
| 1a        | 0.0458             | 0.0382                | 0.0467             | 0.0394                | 0.0458             | 0.0382                | 0.0467             | 0.0393                | 0.0456             | 0.0384                | 0.0466             | 0.0400                |
| 2a        | 0.0477             | 0.0375                | 0.0466             | 0.0373                | 0.0477             | 0.0381                | 0.0469             | 0.0372                | 0.0476             | 0.0373                | 0.0465             | 0.0367                |
| 3a        | 0.0454             | 0.0398                | 0.0467             | 0.0415                | 0.0459             | 0.0398                | 0.0470             | 0.0412                | 0.0451             | 0.0397                | 0.0467             | 0.0407                |
| 4a        | 0.0623             | 0.1007                | 0.0986             | 0.1641                | 0.0906             | 0.1463                | 0.0920             | 0.1642                | 0.1010             | 0.1629                | 0.0962             | 0.1664                |

**Table 5.** Topological parameters at BCPs in the Ln<sup>...</sup>H–BH bonds of the complexes 1–4 and 1a–4a.  $\rho(r)$  in units of eÅ<sup>-3</sup>.

|           | LnH       | [1–BH                 | Ln…H      | 12–BH                 | Ln <sup></sup> H3–BH |                       |  |
|-----------|-----------|-----------------------|-----------|-----------------------|----------------------|-----------------------|--|
| Complexes | $\rho(r)$ | $ abla^2_{ ho_{(r)}}$ | $\rho(r)$ | $ abla^2_{ ho_{(r)}}$ | $\rho(r)$            | $ abla_{ ho_{(r)}}^2$ |  |
| 1         | 0.0112    | 0.0115                | 0.0112    | 0.0113                | 0.0112               | 0.0115                |  |
| 2         | 0.0106    | 0.0105                | 0.0107    | 0.1056                | 0.0106               | 0.0105                |  |
| 3         | 0.0114    | 0.0120                | 0.0114    | 0.0121                | 0.0114               | 0.0118                |  |
| 4         | 0.0031    | 0.0043                | 0.0323    | 0.0040                | 0.0334               | 0.0154                |  |
| 1a        | 0.0209    | 0.0184                | 0.0208    | 0.0180                | 0.0208               | 0.0183                |  |
| 2a        | 0.0192    | 0.0158                | 0.0193    | 0.0158                | 0.0193               | 0.0158                |  |
| 3a        | 0.0198    | 0.0191                | 0.0202    | 0.0187                | 0.0199               | 0.0192                |  |
| 4a        | 0.0563    | 0.0552                | 0.0543    | 0.0630                | 0.0529               | 0.0638                |  |

a "closed" shell character of the coordination bonds.<sup>99</sup> The electron density  $\rho(r)$  at the BCP between Ln and other carbon atoms (C2, C3, C4, C5 and C6) follows the same trend. The partly covalent nature of investigated interactions can then be supported by values of

|V(r)|/G(r) ratio.<sup>99,100</sup> |V(r)|/G(r) < 1 is characteristic of a typical ionic interaction and |V(r)|/G(r) > 2 is diagnostic of a 'classical' covalent interaction. Taking all these criteria into consideration, the QTAIM-defined topological properties at BCPs indicate a mixed (largely ionic with significant covalent component) character of these coordination bonds, also because  $|V(r)|/G(r) < \sim 1.16$  condition has been met in all cases. The Laplacian function  $\nabla^2_{\rho_{(r)}}$  at the BCP between Ln and the C1/N1 atoms of **1–4** and **1a–4a** shows values of 0.00277, 0.0259, 0.0296, 0.0730 and 0.0382, 0.0375, 0.0398 and 0.1007 au for Tb, Dy, Ho and Er, respectively. All other Ln-C and Ln-N bonds also shows similar values Laplacian function  $\nabla^2_{\rho_{(r)}}$ . Based on QTAIM analysis, it is interesting to note that the pyrazole ligated Ln-C bonds (**1a–4a**) are stronger as compared to carbine ligated complexes (**1–4**).

Figure 6 shows comparative plots of the negative Laplacian function  $\nabla^2_{\rho_{(r)}}$  through Ln-C and Ln-N plane for complex **2** and **2a**. It is evident that the valence shell charge concentration (VSCC) zone of the carbenic carbon atom is more diffused towards the group Dy atom in complex **2** (Figure 6) than in complex **2a**. This indicates that there is a larger charge transfer from the carbenic C atom to the Dy atom than N atom. The calculated topological properties at the BCP between the interacting atoms with the corresponding ligand suggest that as the

size of the atom increases, the charge density at BCP decreases.

To ascertain the nature of the interaction between the H–BH and Ln, AIM analysis was performed. In all the cases, the  $\rho(r)$  values are 0.0112 to 0.0209 au which indicates a weak interaction as expected. In addition, all the interactions investigated in the Ln<sup>...</sup>H BCPs are characterized by positive values of  $\rho(r)$  and  $\nabla^2_{\alpha}$ which suggest that it should be considered as closedshell interactions of agostic type. The |V(r)|/G(r) < 1.0is also met, indicating partly covalent Ln. BH interactions for all the complexes. The QTAIM results show that the agostic bonds are characterized by Ln.H-BH bond paths that are straight in the Ln<sup>--</sup>BCP section and highly curved near the agostic hydrogen (refer Figure S19 in SI). The ellipticity ( $\varepsilon$ ) computed at Ln.H-BH BCP has greater values, which also confirms the presence of agostic interaction. This agrees well with the earlier reports.<sup>101-104</sup> It is important to note that BCP is significantly closer to the agostic hydrogen in complexes with Ln<sup>...</sup>H-BH agostic bonds (Figure 7).



**Figure 6.** Contour line diagram of the Laplacian of electron density along the Ln–C/Ln–N plane in complexes **2**, **2a** and **4**, **4a**.



**Figure 7.** Top - Crystal structure showing agostic interactions. Bottom - Contour line diagram of the Laplacian of electron density along the three agostic Ln<sup>...</sup>H–BH interactions (drawn on the agostic plane) in  $Dy(BC^{Me})_3$  (2) and  $Dy(BC^{Me})_3$  (2a).

In all the complexes, the three Ln<sup>...</sup>H–BH interactions make the tricapped trigonal prismatic geometry around the metal centre. The Lanthanide atoms make bonds with the three ligands via six carbon (C1-C2, C3-C4 and C5-C6) and six nitrogen atoms (N1-N2, N2-N4 and N5-N6) for 1–4 and 1a–4a, respectively. Among them C1, C3, C5 (N1, N3, N5) and C2, C4, C6 (N2, N4, N6) make triangles. The *ab initio* results show that, the main anisotropic g-tensor is oriented perpendicular to the Ln<sup>...</sup>H–BH interactions and centre of the C1, C3, C5 (N1, N3, N5) triangle. This is due to the presence of three Ln. H-BH interactions and the C1, C3, C5 (N1, N3, N5) triangle. The Laplacian of electron density drawn along the three carbon (C-C-C) plane in 2 and 2a shows less charge concentration in the triange 1 (Figure S20 in SI).

To probe and quantify the prolate and oblate nature of the electron density the comparative plots of the negative Laplacian function  $\nabla^2_{\rho_{(r)}}$  through Ln-C and Ln-N plane has been analysed. The Laplacian function  $\nabla^2_{\rho_{(r)}}$ value against this general prolate-oblate classification is plotted in Figure 8. Quite interestingly, the Laplacian function  $\nabla^2_{\rho_{(r)}}$  was found to quantify the qualitative oblate-prolate nature of the electron density with values larger than 0.07 au describing prolate shape and smaller values classified as oblate. Within the oblate set studied, the Tb is found to possess stronger oblate character followed by Dy and Ho. This is strikingly matching with the expectation based on the popular qualitative analysis,<sup>50</sup> except for the fact that Laplacian function  $\nabla^2_{\rho_{(r)}}$  explicitly quantify them based on the ligand field employed. The same is also visible



**Figure 8.** The Laplacian function  $\nabla^2_{\rho_{(r)}}$  value plotted against general prolate-oblate classification.

when the Laplacian function  $\nabla^2_{\rho_{(r)}}$  is plotted at the Ln-L plane.

## 4. Conclusions

To summarise, we have undertaken a detailed *ab initio* and DFT, QTAIM calculations on a series of lanthanide  $M(Bc^{Me})_3$  (M = Tb(1), Dy(2), Ho(3), Er(4),  $[Bc^{Me}]^- =$  dihydrobis(methylimidazolyl)borate) and  $M(Bp^{Me})_3$  (M = Tb(1a), Dy(2a), Ho(3a), Er(4a)  $[Bp^{Me}]^- =$  dihydrobis(methypyrazolyl)borate) complexes to shed light on the magnetic properties and to probe how lanthanide-ligand bonding influences the magnetic properties. Conclusions drawn from our work are summarized below:

- 1. Our calculations reproduced experimental absence/ presence of SIM characteristic for all the eight studied complexes nicely (except complex 1a). Among all the eight complexes studied, only complexes 1 and 2 show SIM behaviour with  $U_{cal}/U_{eff}$ values of 256.4/45.2 and 268.5/33.6 cm<sup>-1</sup> for 1 and 2, respectively.
- 2. Experimentally, though complex **1a** only shows variable field frequency dependent  $\chi$ " tails (U<sub>eff</sub> = 21 cm<sup>-1</sup>), our calculations reveal much larger energy barrier of 229.4 cm<sup>-1</sup> contrary to experiment. Small computed barrier height for complex **2a** (23.2 cm<sup>-1</sup>) justifies the experimentally observed frequency dependent  $\chi$ " tails Rest of the four complexes (**3**, **4**, **3a** and **4a**) lack SIM characteristics. Hence, in this set of complexes, Tb<sup>III</sup> (4f<sup>8</sup>) and Dy<sup>III</sup> (4f<sup>9</sup>) ions are found to instil improved SIM

behaviour as compared to  $Ho^{III}(4f^{10})/Er^{III}(4f^{11})$  ions.

- 3. Correlation between ligand field environment and nature of 4f electron density has been corroborated by our calculations. Axial positioning of the ligand (N-heterocyclic carbene or bis(pyrazolyl) borate) has favoured stabilisation of energy multiplet with larger angular momentum projection; *i.e.*,  $\pm$  m<sub>J</sub> = 15/2, **2a** and **3a** for Dy<sup>III</sup>, Tb<sup>III</sup> and Ho<sup>III</sup> ions with 4f oblate electron density respectively. However, in Er<sup>III</sup> compounds (prolate 4f electron density), lowest angular momentum multiplet was computed to be the ground state ( $\pm$  m<sub>J</sub> = 1/2) as such metal ions necessitate presence of equatorial crystal field.
- 4. Calculations yield the following trend in the  $U_{cal}$  values:  $\mathbf{1} \approx \mathbf{2} > \mathbf{1a} > \mathbf{4} > \mathbf{2a} > \mathbf{3a} > \mathbf{3} > \mathbf{4a}$  and this is consistent with the experimental observations. We have also attempted to ascertain the location of anisotropy orientation which pierces out amidst the six coordinated ligand donor atoms of the three coordinating ligands in order to minimise electrostatic repulsion.
- 5. DFT-computed Mulliken charge analysis clearly revealed larger negative charges on the coordinated C-atoms of carbene ligand while small positive charge was detected on coordinated N-atoms of the pyrazole ligand. This essentially leads to stronger crystal field environment for carbene analogues. NBO and Wiberg bond index analysis also reaffirmed the presence of stronger Ln<sup>...</sup>H–B agostic interaction for the pyrazole analogues as compared to their carbene analogues.
- 6. QTAIM analysis provides evidence for a direct interaction between the agostic hydrogen atom and the metal, *viz.*, smaller  $\rho(r)$  values at the Ln<sup>...</sup>H–BH, larger  $\varepsilon$  of the Ln<sup>...</sup>H–BH BCPs. Most importantly, the Laplacian function  $\nabla^2_{\rho(r)}$  was found to quantify the qualitative oblate-prolate nature of the electron density explicitly based on the ligand field employed and this is likely to have influence beyond the example presented.

### **Supplementary Information (SI)**

We have summarised the energies (cm<sup>-1</sup>), corresponding g-tensors, tunnel splitting (cm<sup>-1</sup>), crystal field parameters and angle between main magnetic axis of ground state energy multiplet and higher excited levels of all the Kramers doublets and pseudo-doublets in 2, 2a, 4, 4a and 1, 1a, 3, 3a, respectively, in Tables S1–S9. The orientation of the principal anisotropy axis (gz) for complexes a) 2 and b) 2a are given in Figure S1. The core structural moieties of complexes atom numbers correspond to the representation of Mulliken charges are given in the Figure S2. The second-order perturbation theory computed donor-acceptor charge transfer stabilisation energy in all the eight complexes are given in Figures S3–S18. The molecular graphs of the complexes and the contour line diagram of the Laplacian of electron density drawn along the three carbon (C-C-C) plane are given in the Figures S19 and S20 respectively.

#### Acknowledgements

GR would like to thank SERB (EMR/2014/00024) for the funding. TG would like to thank UGC New Delhi for SRF fellowship. GV would like to thank Indian Institute of Technology Bombay for Post-Doctoral fellowship.

#### References

- Wang H, Wang B-W, Bian Y, Gao S and Jiang J 2016 Coord. Chem. Rev. 306 195
- 2. Liddle S T and van Slageren J 2015 *Chem. Soc. Rev.* 44 6655
- 3. Feltham H L C and Brooker S 2014 *Coord. Chem. Rev.* 276 1
- 4. Woodruff D N, Winpenny R E P and Layfield R A 2013 *Chem. Rev.* **113** 5110
- Wang B W, Wang X Y, Sun H L, Jiang S D and Gao S 2013 Philos. Trans. R. Soc. London, Ser. A 371 20120316
- 6. Habib F and Murugesu M 2013 Chem. Soc. Rev. 42 3278
- Sorace L, Benelli C and Gatteschi D 2011 Chem. Soc. Rev. 40 3092
- 8. Friedman J R and Sarachik M P 2010 Annu. Rev. Condens. Matter Phys. 1 109
- 9. Luzon J and Sessoli R 2012 Dalton Trans. 41 13556
- Wang B, Jiang S, Wang X and Gao S 2009 Sci. China, Ser. B Chem. 52 1739
- 11. Sessoli R and Powell A K 2009 *Coord. Chem. Rev.* **253** 2328
- 12. Ishikawa N 2007 Polyhedron 26 2147
- Pedersen K S, Bendix J and Clerac R 2014 Chem. Commun. 50 4396
- Saitoh E, Miyajima H, Yamaoka T and Tatara G 2004 Nature 432 203
- 15. Leuenberger M N and Loss D 2001 Nature 410 789
- Yamanouchi M, Chiba D, Matsukura F and Ohno H 2004 Nature 428 539
- 17. Bogani L and Wernsdorfer W 2008 Nat. Mater. 7 179
- Xiong G, Qin X Y, Shi P F, Hou Y L, Cui J Z and Zhao B 2014 Chem. Commun. 50 4255
- Li D P, Wang T W, Li C H, Liu D S, Li Y Z and You X Z 2010 Chem. Commun. 46 2929
- Baldoví J J, Cardona-Serra S, Clemente-Juan J M, Coronado E, Gaita-Ariño A and Palii A 2012 *Inorg. Chem.* 51 12565

- 21. Meihaus K R and Long J R 2013 J. Am. Chem. Soc. 135 17952
- Chen G J, Guo Y N, Tian J L, Tang J, Gu W, Liu X, Yan S P, Cheng P and Liao D Z 2012 *Chem. Eur. J.* 18 2484
- 23. Ungur L, Le Roy J J, Korobkov I, Murugesu M and Chibotaru L F 2014 *Angew. Chem. Int. Ed.* **53** 4413
- Clemente-Juan J M, Coronado E and Gaita-Ariño A 2015 In Lanthanides and Actinides in Molecular Magnetism (Weinheim: Wiley-VCH Verlag) pp. 27–60
- 25. Jiang S-D, Wang B-W and Gao S 2014 (Berlin Heidelberg: Springer) pp. 1–31
- Ganivet C R, Ballesteros B, de la Torre G, Clemente-Juan J M, Coronado E and Torres T 2013 *Chem. Eur. J.* 19 1457
- 27. Sun W-B, Yan P-F, Jiang S-D, Wang B-W and Zhang Y-Q 2016 *Chem. Sci.* **7** 684
- Jeletic M, Lin P H, Le Roy J J, Korobkov I, Gorelsky S I and Murugesu M 2011 J. Am. Chem. Soc. 133 19286
- 29. Ishikawa N, Sugita M, Ishikawa T, Koshihara S and Kaizu Y 2003 J. Am. Chem. Soc. 125 8694
- 30. Aromi G and Brechin E K 2006 Struct. Bond. 122 1
- Ishikawa N, Sugita M, Ishikawa T, Koshihara S and Kaizu Y 2004 J. Phys. Chem. B 108 11265
- 32. Gregson M, Chilton N F, Ariciu A-M, Tuna F and Crowe I F 2016 *Chem. Sci.* **7** 155
- 33. Chilton N F, Langley S K, Moubaraki B, Soncini A, Batten S R and Murray K S 2013 *Chem. Sci.* **4** 1719
- Boulon M E, Cucinotta G, Luzon J, Degl'Innocenti C and Perfetti M 2013 Angew. Chem. Int. Ed. 52 350
- 35. Chilton N F 2015 Inorg. Chem. 54 2097
- Chilton N F, Goodwin C A P, Mills D P and Winpenny R E P 2015 Chem. Commun. 51 101
- Blackburn O A, Chilton N F, Keller K, Tait C E and Myers W K 2015 Angew. Chem. Int. Ed. 54 10783
- Mei X-L, Ma Y, Li L-C and Liao D-Z 2012 Dalton Trans. 41 505
- Gatteschi D and Sorace L 2001 J. Solid State Chem. 159 253
- 40. Rechkemmer Y, Fischer J E, Marx R, Dörfel M and Neugebauer P 2015 J. Am. Chem. Soc. **137** 13114
- Chen Y-C, Liu J-L, Ungur L, Liu J and Li Q-W 2016 J. Am. Chem. Soc. 138 2829
- 42. Goswami T and Misra A 2012 J. Phys. Chem. A 116 5207
- 43. Pedersen K S, Ungur L, Sigrist M, Sundt A and Schau-Magnussen M 2014 *Chem. Sci.* **5** 1650
- 44. Oyarzabal I, Ruiz J, Ruiz E, Aravena D and J M Seco 2015 and, Colacio E *Chem. Commun.* **51** 12353
- 45. Chen G-J, Gao C-Y, Tian J-L, Tang J and Gu W 2011 Dalton Trans. 40 5579
- Mondal A K, Goswami S and Konar S 2015 Dalton Trans. 44 5086
- Wang Y-L, Gu B, Ma Y, Xing C and Wang Q-L 2014 CrystEngComm 16 2283
- Pugh T, Tuna F, Ungur L, Collison D and McInnes E J L 2015 Nat. Commun. 6 7492
- 49. Das S, Bejoymohandas K S, Dey A, Biswas S, Reddy M L P and et al. 2015 *Chem. Eur. J.* **21** 6449
- 50. Rinehart J D and Long J R 2011 Chem. Sci. 2 2078
- 51. Gudel H U, Hauser U and Furrer A 1979 *Inorg. Chem* 18 2730

- 52. Amoretti G, Caciuffo R, Carretta S, Guidi T, Magnani N and Santini P 2008 *Inorg. Chim. Acta* **361** 3771
- 53. Bencini A and Gatteschi D 1990 In *EPR of Exchange Coupled Systems* (Berlin: Springer-Verlag)
- 54. Barra A L, Gatteschi D, Sessoli R, Abbati G L and Cornia A 1997 Angew. Chem. Int. Ed. **36** 2329
- 55. Liu J, Chen Y-C, Jia J-H, Liu J-L and Vieru V 2016 *J. Am. Chem. Soc.* **138** 5441
- Ungur L and Chibotaru L F 2015 In Lanthanides and Actinides in Molecular Magnetism (Weinheim: Wiley-VCH Verlag) pp. 153–184
- Huang X-C, Vieru V, Chibotaru L F, Wernsdorfer W, Jiang S-D and Wang X-Y 2015 Chem. Commun. 51 10373
- 58. Marx R, Moro F, Dorfel M, Ungur L and Waters M 2014 Chem. Sci. 5 3287
- 59. Le Roy J J, Ungur L, Korobkov I, Chibotaru L F and Murugesu M 2014 J. Am. Chem. Soc. **136** 8003
- 60. Guo Y-N, Ungur L, Granroth G E, Powell A K and Wu C 2014 *Sci. Rep.* **4** 5471
- Chibotaru L F 2014 In *Theoretical Understanding of* Anisotropy in Molecular Nanomagnets (Berlin Heidelberg: Springer) pp. 1–45
- 62. Venugopal A, Tuna F, Spaniol T P, Ungur L and Chibotaru L F 2013 *Chem. Commun.* **49** 901
- 63. Blagg R J, Ungur L, Tuna F, Speak J and Comar P 2013 *Nat. Chem.* **5** 673
- 64. Wang Y-X, Shi W, Li H, Song Y and Fang L 2012 Chem. Sci. **3** 3366
- Gendron F, Pritchard B, Bolvin H and Autschbach J 2015 Dalton Trans. 44 19886
- 66. Gómez-Coca S, Aravena D, Morales R and Ruiz E 2015 *Coord. Chem. Rev.* **289** 379
- Hänninen M M, Mota A J, Aravena D, Ruiz E and Sillanpää R 2014 *Chem. Eur. J.* 20 8410
- 68. Oyarzabal I, Ruiz J, Seco J M, Evangelisti M and Camón A 2014 *Chem. Eur. J.* **20** 14262
- Gómez-Coca S, Urtizberea A, Cremades E, Alonso P J and Camón A 2014 Nat. Commun. 5 5300
- 70. Costes J P, Titos-Padilla S, Oyarzabal I, Gupta T and Duhayon C 2016 *Inorg. Chem.* **55** 4428
- 71. Upadhyay A, Singh S K, Das C, Mondol R and Langley S K 2014 *Chem. Commun.* **50** 8838
- 72. Singh S K, Gupta T and Rajaraman G 2014 *Inorg. Chem.* **53** 10835
- 73. Rajaraman G, Singh S K, Gupta T and Shanmugam M 2014 *Chem. Commun.* **50** 1551
- 74. Gupta T and Rajaraman G 2014 J. Chem. Sci. 126 1569
- 75. Lucaccini E, Sorace L, Perfetti M, Costes J-P and Sessoli R 2014 *Chem. Commun.* **50** 1648
- Costes J P, Titos-Padilla S, Oyarzabal I, Gupta T and Duhayon C 2015 *Chem. Eur. J.* 21 15785
- 77. Das C, Vaidya S, Gupta T, Frost J M and Righi M 2015 *Chem. Eur. J.* **21** 15639
- Singh S K, Gupta T, Ungur L and Rajaraman G 2015 Chem. Eur. J. 21 13812
- 79. Meihaus K R, Minasian S G, Lukens W W, Kozimor S A and Shuh D K 2014 *J. Am. Chem. Soc.* **136** 6056
- Aquilante F, Autschbach J, Carlson R K, Chibotaru L F and Delcey M G 2016 J. Comput. Chem. 37 506

- Aquilante F, De Vico L, Ferre N, Ghigo G and Malmqvist P A 2010 J. Comput. Chem. 31 224
- 82. Duncan J A 2009 J. Am. Chem. Soc. 131 2416
- 83. Swerts B, Chibotaru L F, Lindh R, Seijo L and Barandiaran Z 2008 J. Chem. Theory Comput. 4 586
- Veryazov V, Widmark P O, Serrano-Andres L, Lindh R and Roos B O 2004 Int. J. Quantum Chem. 100 626
- 85. Karlstrom G, Lindh R, Malmqvist P A, Roos B O and Ryde U 2003 *Comput. Mater. Sci.* **28** 222
- Malmqvist P A, Roos B O and Schimmelpfennig B 2002 Chem. Phys. Lett. 357 230
- Chibotaru L F and Ungur L 2012 J. Chem. Phys. 137 064112
- Ungur L and Chibotaru L 2006 In *The computer programs SINGLE\_ANISO and POLY\_ANISO* (Leuven: University of Leuven)
- 89. Frisch M J, Trucks G W, Schlegel H B, Scuseria G E, Robb M A, Cheeseman J R, Scalmani G, Barone V, Mennucci B, Petersson G A, Nakatsuji H, Caricato M, Li X, ratchian H P, Izmaylov A F, Bloino J, Zheng G, Sonnenberg J L, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery J A Jr, Peralta J E, Ogliaro F, Bearpark M, Heyd J J, Brothers E, Kudin K N, Staroverov V N, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant J C, Iyengar S S, Tomasi J, Cossi M, Rega N, Millam N J, Klene M, Knox J E, Cross J B, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann R E, Yazyev O, Austin A J, Cammi R, Pomelli C, Ochterski J W, Martin R L, Morokuma K, Zakrzewski V G, Voth G A, Salvador P, Dannenberg J J, Dapprich S, Daniels A D, Farkas Ö, Foresman J B, Ortiz J V, Cioslowski J and Fox D J 2009 In Gaussian 09, Revision D.01 (Wallingford CT: Gaussian, Inc.)
- 90. Cundari T R and Stevens W J 1993 J. Chem. Phys. 98 5555
- 91. Schafer A, Huber C and Ahlrichs R 1994 J. Chem. Phys. 100 5829
- 92. Becke A D 1993 J. Chem. Phys. 98 5648
- 93. Lee C, Yang W and Parr R G 1988 Phys. Rev. B. 37 785
- 94. Stephens P J, Devlin F J, Chabalowski C F and Frisch M J 1994 J. Phys. Chem. **98** 11623
- 95. Bader R F W 1990 In *Atoms in molecules– A Quantum Theory* (Oxford, UK: Oxford University Press)
- 96. Bader R F W 2009 J. Phys. Chem. A 113 10391
- 97. BieglerKönig F and Schönbohm J 2002 J. Comput. Chem. 23 1489
- Chilton N F, Collison D, McInnes E J L, Winpenny R E P and Soncini A 2013 *Nat. Commun.* 4 2551
- 99. Espinosa E, Alkorta I, Elguero J and Molins E 2002 J. Chem. Phys. 117 5529
- 100. Jenkins S and Morrison I 2000 Chem. Phys. Lett. 317 97
- 101. Jabłonński M 2015 J. Phys. Chem. A 119 11384
- 102. Jabłoński M 2015 J. Phys. Chem. A 119 4993
- 103. Popelier P and Logothetis G 1998 J. Organomet. Chem. 555 101
- 104. Tognetti V, Joubert L, Raucoules R, De Bruin T and Adamo C 2012 J. Phys. Chem. A **116** 5472