
Tutorial MWQC 2022

1. (a) You are asked to simulate liquid water using SPC model. The box di-
mensions are given as 2nm x 2nm x 2nm. How many water molecules
do you have to fill the box with? (Calculate; do not guess!!)

(b) In a simulation the reference temperature is 300 K. At a given
instant the observed temperature is 290 K. What will be the velocity
re-scaling factor? Assume that you are using instantaneous velocity
re-scaling to adjust the temperature.

2. (a) Transform the time-dependent Schrödinger equation into its time-
independent form.

(b) Show that for a time independent Hamiltonian, solving the Schrödinger
equation reduces to solving the eigenvalue equation for the Hamilto-
nian.

3. Suppose ϕn(r;R), n = 1, 2, ... are the adiabatic or Born-Oppenheimer elec-
tronic states of a molecule where r and R represent the electronic and
nuclear coordinates respectively, i.e., Ĥeϕn(r;R) = En(R)ϕn(r;R), where
Ĥe is the electronic Hamiltonian parametrically dependent on R.

(a) Show that

∇REn = ⟨ϕn(r;R)|∇RĤe|ϕn(r;R)⟩

This is referred to as the Hellman-Feynmann theorem. It is used
to calculate forces on the nuclei moving on a potential energy sur-
face or to calculate analytic derivatives for geometry optimization in
quantum chemistry programs.

(b) Show that the non-adiabatic coupling vector

⟨ϕi(r;R)|∇Rϕj(r;R)⟩ =
⟨ϕi(r;R)|∇RĤe|ϕj(r;R)⟩

Ej − Ei

This expression for the non-adiabatic coupling is useful in several
nuclear dynamics methods including surface hopping.

(c) Consider a system whose electronic state which is a linear combina-
tion of Born-Oppenheimer states, i.e., Ψ(r;R) =

∑
i ciϕi(r;R) . The

Ehrenfest method describes the motion of the nuclei of this system on
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an effective potential given by V = ⟨Ψ|Ĥe|Ψ⟩. Write an expression
for the forces in this case in terms of adiabatic forces and derivative
couplings.

4. Prove that exp[A+B] ̸= exp[A]. exp[B] when [A,B] ̸= 0.

5. For two diabats V1 = 0.5mω2(x− x0)
2 and V2 = 0.5mω2(x+ x0)

2 with a
constant coupling Vc, calculate the adiabatic energies E(x) and eigen-
functions ϕi(x) . Thereby calculate the derivative coupling d12(x) =
⟨ϕ1| ∂

∂xϕ2⟩.

6. Consider a potential V (x, y) given by:

V = 0.5mω2(x2 + y2) +

(
gx gy
gy −gx

)
(1)

(a) Find the eigenvalues and eigenfunctions (ψi) as a function of x, y.

(b) Transform the eigenfunctions to radial polar coordinates: x = r cos(ϕ), y =
r sin(ϕ) and calculate the derivative coupling. d12(r, ϕ) = ⟨ψ1| ∂

∂ϕψ2⟩
(c) Show that integral of d12(r, ϕ) over a closed contour gives π.

7. In classical mechanics one can formulate the dynamics in terms of phase
space density - the so called Liouvillian approach. So, the question one
wants to answer is that if we have an initial phase space density ρ(x, p, t =
0) of interest then what is the time evolved density ρ(x, p, t)? Note that
we will be using a one degree of freedom (hence two dimensional phase
space) notation for this entire problem. A formal solution to the Liouville’s
equation can be written as follows:

ρ(x, p, t) =

∫ ∫
dx′dp′δ[x− xt(x

′, p′)]δ[p− pt(x
′, p′)]ρ(x′, p′, 0) (2)

with (xt, pt) being the classical trajectory at time t, obtained by integrat-
ing the equations of motion with initial conditions (x′, p′). For certain
simple cases one can evaluate the above to obtain the evolved densities.

(a) Suppose the initial density is uniform i.e., ρ(x′, p′, 0) = 1/N with
N being the total number of trajectories. In other words, every
trajectory gets the same weight of 1/N . Obtain a suitable expression
for ρ(x, p, t). Provide an interpretation for your result.

(b) Let us now consider the case of a nonuniform initial density. So, we
take the initial normalized phase space density as

ρ(x′, p′, 0) =
1

πh̄
exp(−(x′ − x0)

2/2σ2
x′) exp(−(p′ − p0)

2/2σ2
p′) (3)

which corresponds to a minimum uncertainty wavepacket centered
around (x0, p0). What this means is that, instead of the initial con-
ditions being uniformly distributed, they are gaussian distributed
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around (x0, p0) with σx′σp′ = h̄/2. Such types of initial densities
are very useful in comparing the results of classical and quantum dy-
namics for a given system. For simplicity, take the system to be a
free particle of mass m and obtain an expression for the time evolved
density. Does this result make intuitive sense to you?

(c) Using ρ(x, p, t) we can now determine the reduced space densities.
For example the momentum space density is obtained as

ρ̃(p, t) =

∫
dxρ(x, p, t) (4)

and a similar expression for the coordinate space density ρ̃(x, t).
Show that for the free particle case

ρ̃(p, t) =
1

σp′
√
2π

exp(−(p− p0)
2/2σ2

p′) (5)

With a bit more effort show that

ρ̃(x, t) =
1

σt
√
2π

exp

[
−
(
x− x0 −

p0t

m

)2

/2σ2
t

]
(6)

with a suitable definition for σt. Do the above reduced space densities
make sense for a free particle? Can you think of a reason or two as
to why is it important to compute the reduced space densities?

You need to perform certain gaussian integrals to obtain the above
results. Thus, ∫ ∞

−∞
dze−λz2

=

√
π

λ
(7)

8. Consider the unimolecular dissociation reaction of H2CO to H2 and CO.
The barrier height V0 is about 93.6 kcal mol−1. The vibrational mode
frequencies (in cm−1) for the reactant are 2843, 2766, 1746, 1501, 1247,
and 1164. For the transition state (TS) the relevant frequencies are
2760, 1654, 1137, 941, 697, and a single imaginary frequency 2288i. Re-
member that a simple TS is expected to have one purely imaginary mode
frequency.

(a) Taking the zero point energy at the TS into account calculate the
threshold energy for the reaction.

(b) Estimate the RRK rate constant in ps−1 at an energy of E = 110
kcal mol−1. Use the threshold energy value obtained above.

(c) At an energy of E = 110 kcal mol−1 count the number of bound
state at the TS. Idenitfy these states by their respective quantum
numbers.
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(d) The classical RRKM rate expression can be written down as

k(E) =
(s− 1)!

∏s
j=1 h̄ωj

2πh̄Es−1

∑
n

h

[
E − V0 − h̄ω‡ ·

(
n+

1

2

)]
(8)

where the summation above is over the quantum numbers corre-
sponding to the bound states at the TS. The function h[z] is the
Heaviside function, hence h[z] = 1 for z > 0 and zero otherwise. In
the above expression, the frequencies ωj correspond to the reactant
whereas the ω‡ correspond to those at the TS [except, of course, the
imaginary one!]. Using the expression above estimate the RRKM
rate at E = 110 kcal mol−1. How does this compare to the RRK
rate?

9. Consider the inverted simple harmonic oscillator Hamiltonian

H(q, p) =
1

2m
p2 − 1

2
mω2q2 (9)

Express the Hamilton’s equations of motion as

q̇ =
∂H

∂p
≡ f(q, p)

ṗ = −∂H
∂q

≡ g(q, p) (10)
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Fig. 1. Tunneling coefficient T of an energy eigenstate of eigenvalue E through a
parabolic barrier (a) in its dependence on E (b) explained in terms of classical
phase-space trajectories (c) subjected to the boundary conditions of a particle com-
ing from the left (d). For three different energies — below, at the top of, and above
the barrier — we depict the classical phase-space trajectories (c) which are either
being reflected from, stopping at the top of, or going above the potential hill, re-
spectively. The crossed line represents the separatrix in phase space separating the
trajectories coming from the left and from the right. Hence, under normal scatter-
ing situations only half of phase space is accessible depicted in (d) for a particle
approaching from the left. The quantum mechanical transmission curve (b) is due
to the quantum mechanical weight of all classical trajectories going above the bar-
rier provided by the Wigner function.

We emphasize that the Wigner function of tunneling in the in-
verted harmonic oscillator has also been analyzed in Ref. [12]. The
authors of this paper first derive the quadrature representation of
the energy eigenfunctions and then perform the integral in the
definition of the Wigner function. In contrast, we start from the
two partial differential equations [10,11] determining the Wigner
function from phase space. Therefore, we find the Wigner function
without ever going through the wave function. This approach is
not only direct but also yields immediately the proposed interpre-
tation of the tunneling coefficient. Moreover, it also builds a bridge
to the ‘on-first-sight’ completely unrelated field of particle creation
at event horizons of black holes associated with logarithmic phase
singularities. Indeed, we show that as a result of the phase-space
analog of the Schrödinger eigenvalue equation the kernel of the
Wigner function contains such a singularity as well.

2. Phase-space differential equations

We study the tunneling of a particle of mass M through a
quadratic barrier of steepness Ω expressed by the Hamiltonian

H ≡ p2

2M
− 1

2
MΩ2x2. (2)

Here x and p denote the position and the coordinate of the parti-
cle.

For this purpose we consider the Wigner function [8]

WE(x, p) ≡ 1
2π h̄

∞∫

−∞
dy e−ipy/h̄ ψ∗

E

(
x− y

2

)
ψE

(
x+ y

2

)
(3)

of an energy eigenstate |E〉 of Ĥ with wave function ψE = ψE (x).
However, instead of solving first the time independent Schrödinger
equation ĤψE = EψE for ψE and then performing the integration
in Eq. (3) pursued in Ref. [12], we analyze the partial differential
equations [10,11]

[
p
M

∂

∂x
+ MΩ2x

∂

∂p

]
WE(x, p) = 0 (4)

and
{[

p2

2M
− 1

2
MΩ2x2

]
− h̄2
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[
1
M

∂2

∂x2
− MΩ2 ∂2

∂p2

]}

× WE(x, p) = EWE(x, p) (5)

for the Wigner function in phase space. We emphasize that Eqs. (4)
and (5) are exact for the inverted harmonic oscillator.

3. Wigner function

The classical Liouville equation (4) implies that WE is constant
along the classical phase-space trajectories of a fixed energy H
given by Eq. (2) and shown in Fig. 1(c), that is

WE(x, p) = WE/(h̄Ω)

(
H(x, p)

h̄Ω

)
. (6)

Next we take into account the boundary conditions associated
with a scattering process. Two distinct possibilities offer them-
selves: (i) the particle approaches the barrier from the left, or (ii)
it impinges from the right.

The two cases manifest themselves in different classical phase-
space trajectories. Whereas the situation (i) is described by the
trajectories in the domain above the separatrix

p = MΩx, (7)

depicted in Fig. 1(d), the case (ii) covers the area below it.
Hence, for a particle coming from the left, the Wigner function

W (l)
E of an energy eigenstate reads

W (l)
E (x, p) = WE/(h̄Ω)

(
H(x, p)

h̄Ω

)
Θ(p − MΩx), (8a)

where Θ denotes the Heaviside step function. Hence, only the
classical trajectories above the separatrix contribute to the Wigner
function as shown in Fig. 1(d).

Likewise, for a particle approaching from the right we find

W (r)
E (x, p) = WE/(h̄Ω)

(
H(x, p)

h̄Ω

)
Θ(MΩx− p). (8b)

With the help of the familiar identity

xδ(x) = 0 (9)

for the Dirac delta function it is easy to verify that both expres-
sions satisfy the Liouville equation (4) as long as the function Wε

is differentiable. The form of Wε = Wε(η) corresponding to the
scaled eigenvalue ε ≡ E/(h̄Ω) in its dependence on the dimen-
sional energy

η ≡ H(x, p)

h̄Ω
≡ 1

h̄Ω

[
p2

2M
− 1

2
MΩ2x2

]
(10)

of a classical trajectory is then determined by the Schrödinger
equation (5) in phase space. Indeed, when we substitute the ansatz
Eq. (8b) into Eq. (5) we arrive at the ordinary differential equation

η
d2Wε

dη2 + dWε

dη
− 4(ε − η)Wε = 0. (11)

Again we have made use of Eq. (9). It is remarkable that Eq. (11)
is independent of the Heaviside step function.

q

Figure 1: Phase space for the inverted harmonic oscillator i.e., a harmonic
barrier. Note the separatrix, which divides reactant region from product region,
and the sample trajectories. The notion of a transition state is dynamically
associated with the separatrix - a phase space structure. One thinks of the
transition state as a condition of dynamical instability.

(a) Find the points in phase space (q∗, p∗) such that q̇ = 0 = ṗ. In
dynamical systems theory such points are known as the fixed points
of the flow.
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(b) Now linearize the equations of motion about the fixed points. In
other words expand f(q, p) and g(q, p) around (q∗, p∗) up to linear
order in the deviations from the fixed point. Denoting the phase
space variables as z ≡ (q, p), show that one can write the linearized
flow as δż = Mδz with M being a 2 × 2 matrix and δz = z − z∗.
Check that the trace and determinant of the matrix M are zero and
−ω2 respectively. Such fixed points are called as saddles.

(c) Defining energy scales such that the barrier top corresponds to E ≡
E‡ = 0, find the equations for the curves in phase space for initial
conditions having the total energy E = 0. These curves yield the so
called separatrix.

(d) Solve the equations of motion exactly for a given initial condition
(q0, p0) at t = 0. Using the exact solution for q(t) show that any
initial condition such that H(q0, p0) = 0 with q0 < 0 and p0 > 0 will
take an infinite time to reach q∗. Note that such initial conditions
correspond to being on a specific branch of the separatrix.

(e) Can you determine how the initial condition in the previous question
approaches the fixed point?

5


