MWQC - 2022 Tutorial

Instructor: Satrajit Adhikari, IACS, Kolkata

1. NO_{3} radical ($\mathrm{D}_{3 \mathrm{~h}}$ symmetry) has 6 normal modes:

- Totally symmetric $\left(Q_{1}\right)$; Umbrella $\left(Q_{2}\right)$
- Degenerate asymmetric stretching $\left(Q_{3 x}\right.$ and $\left.Q_{3 y}\right)$
- Degenerate asymmetric bending $\left(Q_{4 x}\right.$ and $\left.Q_{4 y}\right)$

If the electronic states are coupled through nuclear coordinates as, $V_{i j}=\sum_{k} Q_{k}\left\langle\phi_{i}^{(0)}\right| \hat{V}_{k}\left|\phi_{j}^{(0)}\right\rangle$ $\left[\hat{V}_{k}\left(=\frac{\partial H}{\partial Q_{k}}\right)\right.$ is the first order perturbations w.r.t normal modes, $\left.\left\{Q_{k}\right\} s\right]$, apply the JT condition $\left(\Gamma\left(\phi_{i}^{(0)}\right) \otimes \Gamma\left(\hat{V}_{k}\right) \otimes \Gamma\left(\phi_{j}^{(0)}\right) \notin \Gamma^{0}\right)$ to explore the JT activity of $Q_{3 x}, Q_{3 y}, Q_{4 x}$ and $Q_{4 y}$ modes. Γ s are irreducible representations.

The character table of $D_{3 h}$ point group :

$D_{3 h}$	E	$2 C_{3}(z)$	$3 C_{2}^{\prime}$	$\sigma_{h}(x y)$	$2 S_{3}$	$3 \sigma_{v}$	linear functions, rotations	quadratic functions	cubic functions	normal modes of $N O_{3}$
A_{1}^{\prime}	+1	+1	+1	+1	+1	+1	-	$x^{2}+y^{2}, z^{2}$	$x\left(x^{2}-3 y^{2}\right)$	Q_{1}
A_{2}^{\prime}	+1	+1	-1	+1	+1	-1	R_{z}	-	$y\left(3 x^{2}-y^{2}\right)$	
E^{\prime}	+2	-1	0	+2	-1	0	(x, y)	$\left(x^{2}-y^{2}, x y\right)$	$\left(x z^{2}, y z^{2}\right)$, $\left[x\left(x^{2}+y^{2}\right), y\left(x^{2}+y^{2}\right)\right]$	$Q_{3 x,}, Q_{3 y,}$ $Q_{4 x,} Q_{4 y}$
$A_{1}^{\prime \prime}$	+1	+1	+1	-1	-1	-1	-	-	-	
$A_{2}^{\prime \prime}$	+1	+1	-1	-1	-1	+1	z	-	$z^{3}, z\left(x^{2}+y^{2}\right)$	Q_{2}
$E^{\prime \prime}$	+2	-1	0	-2	+1	0	$\left(R_{x}, R_{y}\right)$	$(x z, y z)$	$\left[x y z, z\left(x^{2}-y^{2}\right)\right]$	

[Hint: One needs to know the direct product of irreducible representation and within symmetric interval, totally symmetric irreducible representation of the integrand defines the existence of integral.]
2. A model Hamiltonian describing the molecular system within a degenerate manifold is:

$$
\begin{gathered}
\hat{H}=\hat{T}_{n}+\hat{H}_{e l} \\
\hat{H}=\hat{T}_{n}+\left(-\frac{1}{2} E_{e l} \frac{\partial^{2}}{\partial \theta^{2}}+\frac{1}{2} q^{2}-q \cos (2 \theta-\phi)\right) \\
\hat{T}_{n}=-\frac{1}{2 \mu} \nabla^{2}=-\frac{1}{2 \mu}\left[\frac{d^{2}}{d q^{2}}+\frac{1}{q^{2}} \frac{d^{2}}{d \phi^{2}}\right]
\end{gathered}
$$

where $\hat{T}_{n}, \hat{H}_{e l}$ are the nuclear kinetic energy operator and electronic Hamiltonian, respectively. θ is the electronic phase angle and q, ϕ are the nuclear coordinates. On the other hand, electronic eigenfunctions obey the following equation:

$$
\begin{equation*}
\left(-\frac{1}{2} E_{e l} \frac{\partial^{2}}{\partial \theta^{2}}-q \cos (2 \theta-\phi)+\frac{1}{2} q^{2}-u(q, \phi)\right) \xi(\theta, q, \phi)=0 \tag{2.1}
\end{equation*}
$$

(a) Considering the trial function $\xi=a(q, \phi) \cos \theta+b(q, \phi) \sin \theta$ in terms of basis functions ($\cos \theta$ and $\sin \theta$), find the eigenvalues (u_{1} and u_{2}) and eigenfunctions (ξ_{1} and ξ_{2}) of the above equation.
(b) Find the non adiabatic coupling terms:

$$
\begin{aligned}
\tau_{q}(q, \phi) & =\left\langle\xi_{1}(\theta, q, \phi)\right| \frac{d}{d q}\left|\xi_{2}(\theta, q, \phi)\right\rangle \\
\tau_{\phi}(q, \phi) & =\frac{1}{q}\left\langle\xi_{1}(\theta, q, \phi)\right| \frac{d}{d \phi}\left|\xi_{2}(\theta, q, \phi)\right\rangle
\end{aligned}
$$

and show that the integration of τ_{ϕ} along a closed contour leads to π.
[Hint: The basic idea for the solution of Schrödinger equation (Eq. 2.1) in the matrix representation with the given trial function is enough. Since the trial function $(\xi=a(q, \phi) \cos \theta+b(q, \phi) \sin \theta)$ has two basis, the matrix will be 2×2 and thereby, two eigenvalues and two eigenfunctions. Those eigenfunctions on substitution in coupling terms will provide the functional forms of those terms.]
3. For a three electronic state sub-Hilbert space, the matrix representation of adiabatic nuclear Schrödinger equation is given by

$$
\sum_{j=1}^{3}\left(H_{i j}-E \delta_{i j}\right) \psi_{j}(\vec{n})=0, \quad i=1,2,3
$$

where

$$
\begin{aligned}
H_{i i} & =-\frac{\hbar^{2}}{2 m}\left(\nabla^{2}+2 \vec{\tau}_{i i}^{(1)} \cdot \vec{\nabla}+\tau_{i i}^{(2)}\right)+u_{i}(n) \\
H_{i j} & =-\frac{\hbar^{2}}{2 m}\left(2 \vec{\tau}_{i j}^{(1)} \cdot \vec{\nabla}+\tau_{i j}^{(2)}\right)=H_{j i}^{\dagger} \\
\vec{\tau}_{i j}^{(1)} & =\left\langle\xi_{i}(\vec{e}, \vec{n})\right| \vec{\nabla}\left|\xi_{j}(\vec{e}, \vec{n})\right\rangle \\
\tau_{i j}^{(2)} & =\left\langle\xi_{i}(\vec{e}, \vec{n})\right| \nabla^{2}\left|\xi_{j}(\vec{e}, \vec{n})\right\rangle \\
\left\langle\xi_{i}(\vec{e}, \vec{n}) \mid \xi_{j}(\vec{e}, \vec{n})\right\rangle & =\delta_{i j},
\end{aligned}
$$

where \vec{n} and \vec{e} are the sets of nuclear and electronic coordinates, respectively. If $\xi_{i}(\vec{e}, \vec{n}) \mathrm{s}$ are the electronic basis functions defined as below:

$$
\begin{aligned}
& \xi_{1}=\left(\begin{array}{c}
\cos \alpha \cos \beta \\
\sin \alpha \cos \beta \\
\sin \beta
\end{array}\right) \\
& \xi_{2}=\left(\begin{array}{c}
-\cos \alpha \sin \beta \sin \gamma-\sin \alpha \cos \gamma \\
-\sin \alpha \sin \beta \sin \gamma+\cos \alpha \cos \gamma \\
\cos \beta \sin \gamma
\end{array}\right), \\
& \xi_{3}=\left(\begin{array}{c}
-\cos \alpha \sin \beta \cos \gamma+\sin \alpha \sin \gamma \\
-\sin \alpha \sin \beta \cos \gamma+\cos \alpha \sin \gamma \\
\cos \beta \cos \gamma
\end{array}\right)
\end{aligned}
$$

and $\alpha(\vec{n}), \beta(\vec{n})$, and $\gamma(\vec{n})$ are the mixing angles between "1-2", "1-3", and "2-3" electronic states, find the explicit forms of non adiabatic coupling matrix elements $\left(\vec{\tau}_{i j}^{(1)}(\vec{n})=\right.$ $\left.\left\langle\xi_{i}(\vec{e}, \vec{n})\right| \vec{\nabla}_{n}\left|\xi_{j}(\vec{e}, \vec{n})\right\rangle\right)$.

The z-components of the mathematical curl (Curl $\left.\tau_{x y}^{i j}\right)$ and the commutator curl $\left(C_{x y}^{i j}\right)$ of NACTs are given by

$$
\begin{gather*}
\text { Curl } \tau_{x y}^{i j}=\frac{\partial}{\partial y} \tau_{x}^{i j}-\frac{\partial}{\partial x} \tau_{y}^{i j} \tag{3.1}\\
C_{x y}^{i j}=\left(\tau_{x} \tau_{y}\right)^{i j}-\left(\tau_{y} \tau_{x}\right)^{i j} \tag{3.2}
\end{gather*}
$$

Show that mathematical and commutator curls are equal (Yang-Mill Field) if the (3 $\times 3$) $\vec{\tau}$ matrix strictly form a three state sub-Hilbert space.
[Hint: One requires to know how to take symbolic derivative and that will provide the functional forms of $\tau_{i j}$. If there are two nuclear coordinates x and y , cross-derivative needs to be taken on the corresponding scalar components (x and y) of explicit forms of $\tau_{i j}$ to calculate mathematical curl (Eq. 3.1), whereas the commutator between the explicit forms of those scalar components of $\tau_{i j}$ will provide the commutator curl (Eq. 3.2).]
4. Given the model diabatic Hamiltonian matrix expanded in terms of the active modes [complex linear combination of two normal modes, bending $\left(Q_{x}\right)$ and asymmetric stretching $\left.\left(Q_{y}\right)\right]$ for the two $2^{2} E^{\prime}$ states of Na_{3} cluster:

$$
\hat{H}_{e}(\rho, \phi)=\left(\begin{array}{cc}
\frac{\rho^{2}}{2} & K \rho e^{i \phi}+\frac{1}{2} g \rho^{2} e^{-2 i \phi} \tag{4.1}\\
K \rho e^{-i \phi}+\frac{1}{2} g \rho^{2} e^{2 i \phi} & \frac{\rho^{2}}{2}
\end{array}\right)
$$

find the eigenvalues and eigenfunctions of the above Hamiltonian. Also formulate the analytic forms of $\rho\left(\tau_{\rho}=\left\langle\xi_{i}(\rho, \phi)\right| \frac{d}{d \rho}\left|\xi_{j}(\rho, \phi)\right\rangle\right)$ and $\phi\left(\tau_{\phi}=\left\langle\xi_{i}(\rho, \phi)\right| \frac{1}{\rho} \frac{d}{d \phi}\left|\xi_{j}(\rho, \phi)\right\rangle\right)$ components of non adiabatic coupling elements.
[Hint: One needs to know how to diagonalize a 2×2 matrix. Column vectors of the diagonalizing matrix are the eigenfunctions, which can be used to find out τ_{ρ} and τ_{ϕ} by taking simple derivatives on those functions. Here two coordinates are necessary, particularly, in polar form to get the angular nonadiabatic coupling term $\left(\tau_{\phi}\right)$, which on integration over circular coordinate (ϕ) provides π.]
5. For a tri-atomic system ABC , the reactant coordinates in collinear arrangement are given by:

$$
\begin{gathered}
\left(r_{B C}, r_{B A}\right) \Leftrightarrow(r, \rho) \\
\vec{r}_{R}=\vec{r}_{B C} \quad \vec{\rho}_{R}=\vec{r}_{B A}-\left(\frac{m_{C}}{m_{B}+m_{C}}\right) \vec{r}_{B C} \\
\mu_{B C}=\frac{m_{B} m_{C}}{m_{B}+m_{C}} \quad \mu_{A, B C}=\frac{m_{A}\left(m_{B}+m_{C}\right)}{M},
\end{gathered}
$$

Figure 1: Reactant coordinates in collinear arrangement
whereas the product coordinate in collinear arrangement:

Figure 2: Product coordinates in collinear arrangement

$$
\begin{aligned}
& \vec{r}_{P}=\vec{r}_{A B} \quad \vec{\rho}_{P}=\vec{r}_{B C}+\left(\frac{m_{A}}{m_{A}+m_{B}}\right) \vec{r}_{A B} \\
& \mu_{A B}=\frac{m_{A} m_{B}}{m_{A}+m_{B}} \quad \mu_{C, A B}=\frac{m_{C}\left(m_{A}+m_{B}\right)}{M}
\end{aligned}
$$

The scaling factors λ_{I} and $\lambda_{I I}$ are defined as:

$$
\lambda_{I}=\left(\frac{\mu_{B C}}{\mu_{A, B C}}\right)^{\frac{1}{4}} \quad \text { and } \quad \lambda_{I I}=\left(\frac{\mu_{A B}}{\mu_{C, A B}}\right)^{\frac{1}{4}},
$$

Thus, the new sets of rescaled coordinates become:

$$
\begin{array}{ll}
\vec{r}_{I}=r_{R} \vec{\lambda}_{I} & \vec{\rho}_{I}=\vec{\rho}_{R} \lambda_{I}^{-1} \\
\vec{r}_{I I}=\vec{r}_{P} \lambda_{I I} & \vec{\rho}_{I I}=\vec{\rho}_{P} \lambda_{I I}^{-1}
\end{array}
$$

which are related through the following transformation:

$$
\left[\begin{array}{c}
\vec{\rho}_{I I} \tag{5.1}\\
\vec{r}_{I I}
\end{array}\right]=\left[\begin{array}{cc}
\cos \beta & \sin \beta \\
-\sin \beta & \cos \beta
\end{array}\right]\left[\begin{array}{c}
\vec{\rho}_{I} \\
\vec{r}_{I}
\end{array}\right]
$$

Find the transformation matrix in terms of masses of the atoms.
[Hint: The working habit on algebraic manipulation is enough.]
6. If the amplitudes of the wave packet on the $\theta \operatorname{grid}(0 \leq \theta \leq 2 \pi)$ are given by

$$
\chi\left(\theta_{1}\right), \chi\left(\theta_{2}\right), \ldots, \chi\left(\theta_{N-1}\right), \chi\left(\theta_{N}\right)
$$

$\left[\theta_{1}, \theta_{2}, \ldots \theta_{N}\right.$ are N number of grid points], the amplitudes can be written as linear combination of plane waves forming a complete basis set:

$$
\begin{equation*}
\chi(\theta)=\sum_{n=1}^{2 M} C_{n} \exp \left(-i \kappa_{n} \theta\right) \tag{6.1}
\end{equation*}
$$

Such basis functions are continuous and their amplitudes match exactly at $\theta=0$ and 2π. Therefore, we obtain the following equations:

$$
\begin{aligned}
\chi\left(\theta_{1}\right) & =\sum_{n=1}^{2 M} C_{n} \exp \left(-i \kappa_{n} \theta_{1}\right), \\
\chi\left(\theta_{2}\right) & =\sum_{n=1}^{2 M} C_{n} \exp \left(-i \kappa_{n} \theta_{2}\right), \\
\vdots & \\
\chi\left(\theta_{k}\right) & =\sum_{n=1}^{2 M} C_{n} \exp \left(-i \kappa_{n} \theta_{k}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\kappa_{n} & =\frac{2 \pi}{L} n, \quad \text { when } \quad n \leq M \\
& =\frac{2 \pi}{L}(n-1-2 M), \quad \text { when } \quad n>M
\end{aligned}
$$

Thus

$$
\begin{gathered}
\int_{\theta} \chi(\theta) \exp \left(i \kappa_{m} \theta\right) d \theta=\sum_{n=1}^{2 M} C_{n}\left[\int_{\theta} \exp \left(-i \kappa_{n} \theta\right) \exp \left(i \kappa_{m} \theta\right) d \theta\right] \\
=\sum_{n=1}^{2 M} C_{n} \delta_{n m}=C_{m}
\end{gathered}
$$

In general, the Fourier coefficients can be written as:

$$
\begin{align*}
& C_{m}=\int_{\theta} \chi(\theta) \exp \left(i \kappa_{m} \theta\right) d \theta \\
& \Rightarrow C_{m}=\sum_{l=1}^{2 N} \chi\left(\theta_{l}\right) \exp \left(i \kappa_{m} \theta_{l}\right) \Delta \theta \tag{6.2}
\end{align*}
$$

If we back substitute those C_{m} s into Eq. 6.1, we can regenerate the original wave function.
If the wave packet on the θ-grid is defined within the domain 0 and $\pi / 2$, the amplitudes of the Fourier basis at $\theta=0$ do not match at $\theta=\pi / 2$ for continuity and thereby, one can avoid the problem by performing sine transformation.

If the amplitudes of the wave packet on the grid $(0 \leq \theta \leq \pi / 2)$ are represented as,

$$
\chi\left(\theta_{1}\right), \chi\left(\theta_{2}\right), \ldots, \chi\left(\theta_{N-1}\right), \chi\left(\theta_{N}\right)
$$

then show that doubling the grid in the following fashion

$$
\begin{array}{cccc}
\theta=0 & \cdots \cdots & \pi / 2 & \cdots \cdots \tag{6.3}\\
\chi\left(\theta_{1}\right), \chi\left(\theta_{2}\right), \ldots, \chi\left(\theta_{N-1}\right), \chi\left(\theta_{N}\right),-\chi\left(\theta_{N}\right),-\chi\left(\theta_{N-1}\right), \ldots,-\chi\left(\theta_{2}\right),-\chi\left(\theta_{1}\right),
\end{array}
$$

would lead to sine transformation:

$$
\begin{equation*}
C_{m}=\sum_{l=1}^{N} 2 i \chi\left(\theta_{l}\right) \sin \left(\kappa_{m} \theta_{l}\right) \Delta \theta \tag{6.4}
\end{equation*}
$$

[Hint: Only the rule of complex exponential functions using Euler's formula is needed.]
7. Time dependent Schrödinger equation can be written as:

$$
\begin{equation*}
i \hbar \frac{\partial \Phi}{\partial t}=H \Phi \tag{7.1}
\end{equation*}
$$

where in matrix representation, Φ is a vector of length N and H is a $N \times N$ matrix.

The matrix (Q) that transform the Hamiltonian matrix (H) into a tri-diagonal form (T) is:

$$
\begin{equation*}
Q^{\dagger} H Q=T \quad Q^{\dagger} Q=1 \tag{7.2}
\end{equation*}
$$

where Q is defined as:

$$
Q=\left[q_{1} q_{2} \ldots q_{j} \ldots q_{l}\right]_{1 \times l}, \quad q_{i} \text { is vector of length } N
$$

and T is of the following form,

$$
T=\left[\begin{array}{cccccccc}
\alpha_{1} & \beta_{1} & 0 & \ldots & & \ldots & & 0 \\
\beta_{1} & \alpha_{2} & \beta_{2} & & & & & \vdots \\
0 & \beta_{2} & \alpha_{3} & \beta_{3} & & & & \\
\vdots & & & \ddots & & & & \\
& & & & & \beta_{j-1} & & \\
& & & & \beta_{j-1} & \alpha_{j} & \beta_{j} & \\
\vdots & & & & & \beta_{j} & \alpha_{j+1} & \\
& & & & & & & \\
& & & & & & & \\
0 & \ldots & & & & \ldots & 0 & \beta_{l-1} \\
& & & \alpha_{l}
\end{array}\right]_{l \times l}
$$

Considering,

$$
\begin{gather*}
H Q=Q T \\
\Rightarrow H\left[\begin{array}{llllll}
q_{1} & q_{2} & \ldots & q_{j} & \ldots & q_{l}
\end{array}\right]=\left[\begin{array}{llllll}
q_{1} & q_{2} & \ldots & q_{j} & \ldots & q_{l}
\end{array}\right] T \tag{7.3}
\end{gather*}
$$

derive the relations $\left(\alpha_{j}=q_{j}^{\dagger} H q_{j}, \beta_{j-1}=q_{j-1}^{\dagger} H q_{j}\right)$ to obtain the elements of tri-diagonal matrix T.
[Hint: The knowledge on the multiplication of matrix and understanding on the orthogonal properties of vectors are only required.]

