MWQC - 2022 Tutorial

Instructor: Satrajit Adhikari, IACS, Kolkata

- 1. NO₃ radical (D_{3h} symmetry) has 6 normal modes :
 - Totally symmetric (Q_1) ; Umbrella (Q_2)
 - Degenerate asymmetric stretching $(Q_{3x} \text{ and } Q_{3y})$
 - Degenerate asymmetric bending $(Q_{4x} \text{ and } Q_{4y})$

If the electronic states are coupled through nuclear coordinates as, $V_{ij} = \sum_k Q_k \langle \phi_i^{(0)} | \hat{V}_k | \phi_j^{(0)} \rangle$ $[\hat{V}_k \left(= \frac{\partial H}{\partial Q_k} \right)$ is the first order perturbations w.r.t normal modes, $\{Q_k\}s]$, apply the JT condition $(\Gamma(\phi_i^{(0)}) \otimes \Gamma(\hat{V}_k) \otimes \Gamma(\phi_j^{(0)}) \notin \Gamma^0)$ to explore the JT activity of Q_{3x} , Q_{3y} , Q_{4x} and Q_{4y} modes. Γ s are irreducible representations.

D_{3h}	E	$2C_{3}(z)$	3 <i>C</i> ₂ '	$\sigma_h(xy)$	2 <i>S</i> ₃	$3\sigma_{v}$	linear functions, rotations	quadratic functions	cubic functions	normal modes of NO ₃
$A'_{\rm l}$	+1	+1	+1	+1	+1	+1	-	$x^2 + y^2, z^2$	$x(x^2-3y^2)$	Q_1
A_2'	+1	+1	-1	+1	+1	-1	R _z	-	$y(3x^2-y^2)$	
E'	+2	-1	0	+2	-1	0	(x, y)	$(x^2 - y^2, xy)$	$(xz^2, yz^2),$ $[x(x^2 + y^2), y(x^2 + y^2)]$	$Q_{3x,}Q_{3y,}$ $Q_{4x,}Q_{4y}$
$A_{\rm l}^{\prime\prime}$	+1	+1	+1	-1	-1	-1	-	-	-	
A''_2	+1	+1	-1	-1	-1	+1	Z.	-	$z^3, z(x^2+y^2)$	Q_2
<i>E</i> ″	+2	-1	0	-2	+1	0	(R_x, R_y)	(<i>xz</i> , <i>yz</i>)	$[xyz, z(x^2 - y^2)]$	

The character table of $\mathrm{D}_{3\mathrm{h}}$ point group :

[Hint: One needs to know the direct product of irreducible representation and within symmetric interval, totally symmetric irreducible representation of the integrand defines the existence of integral.]

2. A model Hamiltonian describing the molecular system within a degenerate manifold is:

$$H = T_n + H_{el}$$
$$\hat{H} = \hat{T}_n + \left(-\frac{1}{2}E_{el}\frac{\partial^2}{\partial\theta^2} + \frac{1}{2}q^2 - q\cos(2\theta - \phi)\right),$$
$$\hat{T}_n = -\frac{1}{2\mu}\nabla^2 = -\frac{1}{2\mu}\left[\frac{d^2}{dq^2} + \frac{1}{q^2}\frac{d^2}{d\phi^2}\right]$$

where \hat{T}_n , \hat{H}_{el} are the nuclear kinetic energy operator and electronic Hamiltonian, respectively. θ is the electronic phase angle and q, ϕ are the nuclear coordinates. On the other hand, electronic eigenfunctions obey the following equation:

$$\left(-\frac{1}{2}E_{el}\frac{\partial^2}{\partial\theta^2} - q\cos(2\theta - \phi) + \frac{1}{2}q^2 - u(q,\phi)\right)\xi(\theta,q,\phi) = 0$$
(2.1)

- (a) Considering the trial function $\xi = a(q, \phi) \cos \theta + b(q, \phi) \sin \theta$ in terms of basis functions $(\cos \theta \text{ and } \sin \theta)$, find the eigenvalues $(u_1 \text{ and } u_2)$ and eigenfunctions $(\xi_1 \text{ and } \xi_2)$ of the above equation.
- (b) Find the non adiabatic coupling terms:

$$\tau_q(q,\phi) = \langle \xi_1(\theta,q,\phi) | \frac{d}{dq} | \xi_2(\theta,q,\phi) \rangle$$

$$\tau_\phi(q,\phi) = \frac{1}{q} \langle \xi_1(\theta,q,\phi) | \frac{d}{d\phi} | \xi_2(\theta,q,\phi) \rangle$$

and show that the integration of τ_{ϕ} along a closed contour leads to π .

[Hint: The basic idea for the solution of Schrödinger equation (Eq. 2.1) in the matrix representation with the given trial function is enough. Since the trial function $(\xi = a(q, \phi) \cos \theta + b(q, \phi) \sin \theta)$ has two basis, the matrix will be 2 X 2 and thereby, two eigenvalues and two eigenfunctions. Those eigenfunctions on substitution in coupling terms will provide the functional forms of those terms.]

3. For a three electronic state sub-Hilbert space, the matrix representation of adiabatic nuclear Schrödinger equation is given by

$$\sum_{j=1}^{3} (H_{ij} - E\delta_{ij})\psi_j(\vec{n}) = 0, \qquad i = 1, 2, 3,$$

where

$$\begin{aligned} H_{ii} &= -\frac{\hbar^2}{2m} (\nabla^2 + 2\vec{\tau}_{ii}^{(1)} \cdot \vec{\nabla} + \tau_{ii}^{(2)}) + u_i(n) \\ H_{ij} &= -\frac{\hbar^2}{2m} (2\vec{\tau}_{ij}^{(1)} \cdot \vec{\nabla} + \tau_{ij}^{(2)}) = H_{ji}^{\dagger} \\ \vec{\tau}_{ij}^{(1)} &= \langle \xi_i(\vec{e}, \vec{n}) | \vec{\nabla} | \xi_j(\vec{e}, \vec{n}) \rangle \\ \tau_{ij}^{(2)} &= \langle \xi_i(\vec{e}, \vec{n}) | \nabla^2 | \xi_j(\vec{e}, \vec{n}) \rangle \\ \langle \xi_i(\vec{e}, \vec{n}) | \xi_j(\vec{e}, \vec{n}) \rangle &= \delta_{ij}, \end{aligned}$$

where \vec{n} and \vec{e} are the sets of nuclear and electronic coordinates, respectively. If $\xi_i(\vec{e}, \vec{n})$ s are the electronic basis functions defined as below:

$$\xi_{1} = \begin{pmatrix} \cos \alpha \cos \beta \\ \sin \alpha \cos \beta \\ \sin \beta \end{pmatrix}$$

$$\xi_{2} = \begin{pmatrix} -\cos \alpha \sin \beta \sin \gamma - \sin \alpha \cos \gamma \\ -\sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma \\ \cos \beta \sin \gamma \end{pmatrix},$$

$$\xi_{3} = \begin{pmatrix} -\cos \alpha \sin \beta \cos \gamma + \sin \alpha \sin \gamma \\ -\sin \alpha \sin \beta \cos \gamma + \cos \alpha \sin \gamma \\ \cos \beta \cos \gamma \end{pmatrix},$$

and $\alpha(\vec{n})$, $\beta(\vec{n})$, and $\gamma(\vec{n})$ are the mixing angles between "1-2", "1-3", and "2-3" electronic states, find the explicit forms of non adiabatic coupling matrix elements $(\vec{\tau}_{ij}^{(1)}(\vec{n}) = \langle \xi_i(\vec{e},\vec{n}) | \vec{\nabla}_n | \xi_j(\vec{e},\vec{n}) \rangle).$

The z-components of the mathematical curl $(Curl \ \tau_{xy}^{ij})$ and the commutator curl (C_{xy}^{ij}) of NACTs are given by

$$Curl \ \tau_{xy}^{ij} = \frac{\partial}{\partial y} \tau_x^{ij} - \frac{\partial}{\partial x} \tau_y^{ij}$$
(3.1)

$$C_{xy}^{ij} = (\tau_x \tau_y)^{ij} - (\tau_y \tau_x)^{ij}$$
(3.2)

Show that mathematical and commutator curls are equal (Yang-Mill Field) if the $(3 \times 3) \vec{\tau}$ matrix strictly form a three state sub-Hilbert space.

[Hint: One requires to know how to take symbolic derivative and that will provide the functional forms of τ_{ij} . If there are two nuclear coordinates x and y, cross-derivative needs to be taken on the corresponding scalar components (x and y) of explicit forms of τ_{ij} to calculate mathematical curl (Eq. 3.1), whereas the commutator between the explicit forms of those scalar components of τ_{ij} will provide the commutator curl (Eq. 3.2).]

4. Given the model diabatic Hamiltonian matrix expanded in terms of the active modes [complex linear combination of two normal modes, bending (Q_x) and asymmetric stretching (Q_y)] for the two $2^2 E'$ states of Na₃ cluster:

$$\hat{H}_{e}(\rho,\phi) = \begin{pmatrix} \frac{\rho^{2}}{2} & K\rho e^{i\phi} + \frac{1}{2}g\rho^{2}e^{-2i\phi} \\ & & \\ K\rho e^{-i\phi} + \frac{1}{2}g\rho^{2}e^{2i\phi} & \frac{\rho^{2}}{2} \end{pmatrix}$$
(4.1)

find the eigenvalues and eigenfunctions of the above Hamiltonian. Also formulate the analytic forms of ρ ($\tau_{\rho} = \langle \xi_i(\rho, \phi) | \frac{d}{d\rho} | \xi_j(\rho, \phi) \rangle$) and ϕ ($\tau_{\phi} = \langle \xi_i(\rho, \phi) | \frac{1}{\rho} \frac{d}{d\phi} | \xi_j(\rho, \phi) \rangle$) components of non adiabatic coupling elements.

[Hint: One needs to know how to diagonalize a 2 X 2 matrix. Column vectors of the diagonalizing matrix are the eigenfunctions, which can be used to find out τ_{ρ} and τ_{ϕ} by taking simple derivatives on those functions. Here two coordinates are necessary, particularly, in polar form to get the angular nonadiabatic coupling term (τ_{ϕ}) , which on integration over circular coordinate (ϕ) provides π .]

5. For a tri-atomic system ABC, the reactant coordinates in collinear arrangement are given by:

$$(r_{BC}, r_{BA}) \Leftrightarrow (r, \rho)$$
$$\vec{r}_R = \vec{r}_{BC} \qquad \vec{\rho}_R = \vec{r}_{BA} - \left(\frac{m_C}{m_B + m_C}\right) \vec{r}_{BC}$$
$$\mu_{BC} = \frac{m_B m_C}{m_B + m_C} \qquad \mu_{A,BC} = \frac{m_A (m_B + m_C)}{M},$$

Figure 1: Reactant coordinates in collinear arrangement

whereas the product coordinate in collinear arrangement:

Figure 2: Product coordinates in collinear arrangement

$$\vec{r}_P = \vec{r}_{AB} \qquad \vec{\rho}_P = \vec{r}_{BC} + \left(\frac{m_A}{m_A + m_B}\right) \vec{r}_{AB}$$
$$\mu_{AB} = \frac{m_A m_B}{m_A + m_B} \qquad \mu_{C,AB} = \frac{m_C (m_A + m_B)}{M}$$

The scaling factors λ_I and λ_{II} are defined as:

$$\lambda_I = \left(\frac{\mu_{BC}}{\mu_{A,BC}}\right)^{\frac{1}{4}}$$
 and $\lambda_{II} = \left(\frac{\mu_{AB}}{\mu_{C,AB}}\right)^{\frac{1}{4}}$,

Thus, the new sets of rescaled coordinates become:

$$\vec{r}_I = r_R \vec{\lambda}_I \qquad \vec{\rho}_I = \vec{\rho}_R \lambda_I^{-1}$$
$$\vec{r}_{II} = \vec{r}_P \lambda_{II} \qquad \vec{\rho}_{II} = \vec{\rho}_P \lambda_{II}^{-1}$$

which are related through the following transformation:

$$\begin{bmatrix} \vec{\rho}_{II} \\ \vec{r}_{II} \end{bmatrix} = \begin{bmatrix} \cos\beta & \sin\beta \\ -\sin\beta & \cos\beta \end{bmatrix} \begin{bmatrix} \vec{\rho}_I \\ \vec{r}_I \end{bmatrix}$$
(5.1)

Find the transformation matrix in terms of masses of the atoms.

[Hint: The working habit on algebraic manipulation is enough.]

6. If the amplitudes of the wave packet on the θ grid $(0 \le \theta \le 2\pi)$ are given by

$$\chi(heta_1), \chi(heta_2), \dots, \chi(heta_{N-1}), \chi(heta_N)$$

 $[\theta_1, \theta_2, \dots, \theta_N]$ are N number of grid points], the amplitudes can be written as linear combination of plane waves forming a complete basis set:

$$\chi(\theta) = \sum_{n=1}^{2M} C_n \exp\left(-i\kappa_n\theta\right)$$
(6.1)

Such basis functions are continuous and their amplitudes match exactly at $\theta = 0$ and 2π . Therefore, we obtain the following equations:

$$\chi(\theta_1) = \sum_{n=1}^{2M} C_n \exp(-i\kappa_n \theta_1),$$

$$\chi(\theta_2) = \sum_{n=1}^{2M} C_n \exp(-i\kappa_n \theta_2),$$

$$\vdots$$

$$\chi(\theta_k) = \sum_{n=1}^{2M} C_n \exp(-i\kappa_n \theta_k),$$

where

$$\kappa_n = \frac{2\pi}{L}n, \quad \text{when} \quad n \le M$$

$$= \frac{2\pi}{L}(n-1-2M), \quad \text{when} \quad n > M$$

Thus

$$\int_{\theta} \chi(\theta) \exp(i\kappa_m \theta) \, d\theta = \sum_{n=1}^{2M} C_n \left[\int_{\theta} \exp(-i\kappa_n \theta) \exp(i\kappa_m \theta) \, d\theta \right]$$
$$= \sum_{n=1}^{2M} C_n \delta_{nm} = C_m$$

In general, the Fourier coefficients can be written as:

$$C_m = \int_{\theta} \chi(\theta) \exp(i\kappa_m \theta) \, d\theta$$

$$\Rightarrow C_m = \sum_{l=1}^{2N} \chi(\theta_l) \exp(i\kappa_m \theta_l) \, \Delta\theta$$
(6.2)

If we back substitute those C_m s into Eq. 6.1, we can regenerate the original wave function.

If the wave packet on the θ -grid is defined within the domain 0 and $\pi/2$, the amplitudes of the Fourier basis at $\theta=0$ do not match at $\theta = \pi/2$ for continuity and thereby, one can avoid the problem by performing sine transformation.

If the amplitudes of the wave packet on the grid $(0 \le \theta \le \pi/2)$ are represented as,

$$\chi(\theta_1), \chi(\theta_2), \ldots, \chi(\theta_{N-1}), \chi(\theta_N),$$

then show that doubling the grid in the following fashion

$$\theta = 0 \qquad \dots \qquad \pi/2 \qquad \dots \qquad \pi$$

$$\chi(\theta_1), \chi(\theta_2), \dots, \chi(\theta_{N-1}), \chi(\theta_N), -\chi(\theta_N), -\chi(\theta_{N-1}), \dots, -\chi(\theta_2), -\chi(\theta_1), \qquad (6.3)$$

would lead to sine transformation:

$$C_m = \sum_{l=1}^{N} 2i\chi(\theta_l) \sin\left(\kappa_m \theta_l\right) \Delta\theta$$
(6.4)

[Hint: Only the rule of complex exponential functions using Euler's formula is needed.]

7. Time dependent Schrödinger equation can be written as:

$$i\hbar\frac{\partial\Phi}{\partial t} = H\Phi,\tag{7.1}$$

where in matrix representation, Φ is a vector of length N and H is a $N \times N$ matrix.

The matrix (Q) that transform the Hamiltonian matrix (H) into a tri-diagonal form (T) is:

$$Q^{\dagger}HQ = T \qquad Q^{\dagger}Q = 1, \tag{7.2}$$

•

where Q is defined as:

$$Q = [q_1 q_2 \dots q_j \dots q_l]_{1 \times l}, \qquad q_i \text{ is vector of length } N$$

and T is of the following form,

$$T = \begin{bmatrix} \alpha_1 & \beta_1 & 0 & \dots & & \dots & & 0 \\ \beta_1 & \alpha_2 & \beta_2 & & & & \vdots \\ 0 & \beta_2 & \alpha_3 & \beta_3 & & & & \\ \vdots & & \ddots & & & & \\ & & & & \beta_{j-1} & & \\ & & & & & & \beta_{j} \\ \vdots & & & & & & \beta_{j} \\ \vdots & & & & & & & \beta_{l-1} \\ 0 & \dots & & & & & 0 & \beta_{l-1} & \alpha_l \end{bmatrix}_{l \times l}$$

Considering,

$$HQ = QT$$

$$\Rightarrow H \begin{bmatrix} q_1 & q_2 & \dots & q_j & \dots & q_l \end{bmatrix} = \begin{bmatrix} q_1 & q_2 & \dots & q_j & \dots & q_l \end{bmatrix} T,$$
(7.3)

derive the relations $(\alpha_j = q_j^{\dagger} H q_j, \beta_{j-1} = q_{j-1}^{\dagger} H q_j)$ to obtain the elements of tri-diagonal matrix T.

[Hint: The knowledge on the multiplication of matrix and understanding on the orthogonal properties of vectors are only required.]